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Abstract 

Abstract of dissertation entitled: Low-Resolution Face Recognition submitted by QU, 

Tong for the degree of MSc in Electronic and Information Engineering at The Hong 

Kong Polytechnic University in August 2013.  

Among face-recognition (FR) problems, the identification of low-resolution (LR) face 

images is still a challenging task. Traditional FR algorithms cannot work satisfactorily 

in matching LR probe images to high-resolution (HR) gallery images. To perform this 

matching, there are three standard approaches: (1) down-sample the gallery images 

and then perform the matching of LR face images; (2) upscale the probe images using 

super-resolution (SR) methods and then perform the matching of HR face images; and 

(3) project the LR probe images and the HR gallery images into a common subspace 

and then perform matching in the subspace. In this project, traditional algorithms based 

on the first two approaches will first be introduced and evaluated under different res-

olutions. The four baseline FR algorithms are PCA, also known as eigenfaces, com-

bined PCA and LDA (PCA+LDA, a variant of fisherfaces), the PCA+LDA-based FR 

algorithm based on Gabor features (G-PCA+LDA), and LGBPHS. The three baseline 

SR algorithms are the bicubic interpolation, eigentransformation and Coherent Local 

Linear Reconstruction Super-resolution (CLLR-SR). After that, a coupled-projection 

method based on Canonical Correlation Analysis (CCA) is proposed and evaluated. 

Experiments show that the coupled-projection method produces higher identification 

rates than other FR methods do.  
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Chapter 1  Introduction 

1.1  Background 

Face recognition (FR) has received great interest and achieved impressive success dur-

ing the past three decades[1], especially in applications under controlled environment. 

However, the performance of face recognition in uncontrolled environment is still far 

from being satisfactory. Usually, these environments involve subjects that are uncoop-

erative or unaware that an image is being captured. In some scenarios, it can be desir-

able to photograph subjects without their active participation or knowledge, such as in 

video surveillance. In cases where the image acquisition environment is not ideal, cap-

tured faces can have a much lower resolution than faces captured in a controlled setting 

because of the large distance between the camera and the objects.  

Face recognition based on low-resolution (LR) images is a very challenging problem 

because compared with high-resolution (HR) images, LR ones lose much facial infor-

mation which is important for high recognition accuracy. Hence, it is impossible for 

traditional face recognition algorithms to compare LR images captured at testing to 

HR images directly, as the LR and HR images do not share a common feature repre-

sentation.  

To deal with the problem, there are three standard approaches: (1) down-sample the 

entire gallery and then perform matching in LR feature space; (2) use super-resolution 

(SR) or interpolation methods to reconstruct the HR version of the LR probe and then 

perform matching in the usual way in HR feature space; and (3) project the HR gallery 

images and LR probe images into a common subspace and then perform matching in 

the common feature space. Figure 1-1 shows the relationship among the three standard 

approaches.  
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Figure 1-1 Standard approaches to matching a LR probe to a HR gallery. 

(1) Down-sampling the gallery and then matching; (2) super-resolving the probe and then matching; 

(3) projecting LR probe and HR gallery into a common subspace and then marching.  

Adapted from [2].  

Reducing the size of the gallery images is the simplest approach to matching LR probe 

images. Once gallery images are down-sampled, traditional linear projection methods 

for face recognition, including Principal Component Analysis (PCA)[3] and Linear Dis-

criminant Analysis (LDA)[4], can be used. While these approaches can be effective for 

comparing images of the same resolution, down-sampling the gallery images need-

lessly discards information in the data.  

The opposite approach is to increase the resolution of the probe images. Performing 

some form of SR makes the probe images the same dimensionality as the gallery im-

ages, and standard single resolution FR methods can once again be used. Simple meth-

ods such as bilinear or bicubic interpolation do not require any training. Other SR 
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methods can be trained to learn the relationship between HR and LR images. These 

approaches can be effective for reconstructing HR images, and while they can produce 

visually appealing results, they often lack the high frequency components of true HR 

images to be very effective for recognition tasks.  

1.2  Overview 

In this project, four baseline FR algorithms are firstly introduced in Chapter 2, and 

they are evaluated in subsequent chapters. The four baseline FR algorithms are Prin-

cipal Component Analysis (PCA)[3], combined PCA and Linear Discriminant Analysis 

(PCA+LDA)[5], the PCA+LDA algorithm based on Gabor features (G-PCA+LDA)[6], 

and the Local Gabor Binary Pattern Histogram Sequence (LGBPHS)[7]. The PCA- and 

the PCA+LDA-based face recognition algorithms are both fundamental and have been 

well-studied. 2-D Gabor wavelets[8] and local binary patterns (LBP)[9] are extensively 

used for local feature representation and extraction, and demonstrate their success in 

face recognition. Therefore, the PCA+LDA algorithm based on Gabor features and the 

LGBPHS are also used as baseline algorithms. Furthermore, in contrast to the other 

three baseline algorithms, LGBPHS is not a statistical-learning-based method. As a 

result, it will not be tuned to a specific training set, and dose not suffer from the gen-

eralizability problem.  

The three baseline SR methods evaluated are bicubic interpolation, eigentransfor-

mation[10], and Coherent Local Linear Reconstruction (CLLR)[11]. The bicubic inter-

polation method is widely used for image resampling, which does not require any 

training, while eigentransformation and CLLR are methods dedicated to hallucinating 

face images by learning the structural relationship between LR and HR training sam-

ples, which are detailed in Chapter 3. Their algorithms are closely related to PCA, and 

CLLR is also based on Canonical Correlation Analysis (CCA)[12] and Local Linear 
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Embedding (LLE)[13]. The experimental results in Chapter 5 show that the example-

based super-resolution methods outperform the bicubic interpolation for face recogni-

tion purpose.  

Experiments are conducted to test the above mentioned FR and SR algorithms on dif-

ferent face image resolutions. By comparing results of the first standard approaches 

and the second standard approaches described in Section 1.1, we can find out that for 

most FR algorithms, using SR methods to upscale the LR probe image does not actu-

ally increase the identification rate, since the these methods are aimed at improve the 

visual quality of the images rather than improving the classification performance. The 

super-resolved images often lack the high frequency components of true HR images 

to be very effective for recognition tasks.  

Therefore, in Chapter 4, a coupled-projection method is proposed: Coherent Linear 

Discriminant Analysis (CLDA). This method is inspired by the CLLR super-resolution 

algorithm and CCA is used as a tool to project the LR and HR images into a common 

subspace.  

1.3  Objectives and Organization 

In this project, the existing FR algorithms on the LR face images are first evaluated. 

Then, the performances of SR methods on FR are evaluated. Finally, we consider one 

simple coupled-projection method for LR probe identification and evaluate the perfor-

mances of them.  

This dissertation is organized as follows: After a brief introduction to the background 

and objectives of the project in Chapter 1, Chapter 2-3 introduce the baseline FR algo-

rithms and the baseline SR algorithms. Chapter 4 presents a coupled-projection method 
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for the recognition of the LR facial images, which are inspired by the methods intro-

duced in Chapter 2-3. Chapter 5 proposes an evaluation protocol and illustrates the 

evaluation results of the algorithms proposed in Chapter 2-4. Finally, Chapter 6 sum-

marizes all the evaluation results and draws a conclusion for this project.   
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Chapter 2  Baseline Face Recognition Algorithms 

2.1  Principal Component Analysis (PCA) 

PCA, also known as the eigenfaces[3] is commonly used for dimensionality reduction 

in face recognition. PCA chooses projection directions 𝑾𝑃𝐶𝐴 that maximize the total 

scatter across all images of all faces in the training set.  

Let us consider a training set that contains 𝑁 sample images {𝑥1, 𝑥2, … , 𝑥𝑁} ∈ ℝ𝑛, 

and assume that each image belongs to one of the 𝐶 classes {𝑋1, 𝑋2,… , 𝑋𝐶}. Then, 

consider a linear transformation mapping the original 𝑛-dimensional image space into 

an 𝑚-dimensional feature space, where 𝑚 < 𝑛. The new feature vectors 𝑦𝑘 ∈ ℝ𝑚 

are defined by the following linear transformation:  

 𝑦𝑘 = 𝑾𝑇𝑥𝑘, 𝑘 = 1, 2, … ,𝑁, (1) 

where 𝑾 ∈ ℝ𝑛×𝑚 is a matrix with orthonormal columns.  

The total scatter matrix 𝑺𝑇 is defined as follows:  

 𝑺𝑇 = 1
𝑁
∑ (𝑥𝑘 − 𝜇)(𝑥𝑘 − 𝜇)𝑇𝑁

𝑘=1 , (2) 

where 𝜇 ∈ ℝ𝑛 is the mean vector of all sample images in the training set.  

After applying the linear transformation 𝑾𝑇, the scatter of the transformed feature 

vectors {𝑦1, 𝑦2, … , 𝑦𝑁} is 𝑾𝑇𝑺𝑇𝑾. Then, the projection matrix 𝑾𝑃𝐶𝐴 can be cho-

sen as follows:  

 𝑾𝑃𝐶𝐴 = argmax
𝑾

|𝑾𝑇𝑺𝑇𝑾| = [𝒘1 𝒘2 … 𝒘𝑚], (3) 



7 

 

where {𝒘𝑖|𝑖 = 1, 2, … ,𝑚} is the set of 𝑛-dimensional eigenvectors of 𝑺𝑇  corre-

sponding to the 𝑚 largest eigenvalues. In most circumstances, 𝑚 can be chosen far 

less than 𝑛 without significantly decreasing the recognition rates. Then, classification 

is performed using a nearest neighbour classifier in the reduced feature space.  

2.2  Combined PCA and LDA (PCA+LDA) 

2.2.1  Linear Discriminant Analysis (LDA) 

LDA[4],[5] is a widely used method for feature extraction and dimensionality reduction 

in pattern recognition and has been proposed in face recognition. LDA tries to find the 

“best” project direction in which training samples belonging to different classes are 

best separated. Mathematically, it selects the projection matrix 𝑾𝐿𝐷𝐴 in such a way 

that the ratio of the determinant of the between-class scatter matrix 𝑺𝐵 of the pro-

jected samples and the within-class scatter matrix 𝑺𝑊  of the projected samples is 

maximized.  

Let the between-class scatter matrix be defined as 

 𝑺𝐵 = ∑ 𝑁𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)𝑇𝐶
𝑖=1 , (4) 

and the within-class scatter matrix be defined as 

 𝑺𝑊 = ∑ ∑ (𝑥𝑘 − 𝜇𝑖)(𝑥𝑘 − 𝜇𝑖)𝑇
𝑥𝑘∈𝑋𝑖

𝐶
𝑖=1 , (5) 

where 𝜇𝑖 is the mean image of class 𝑋𝑖, and 𝑁𝑖 is the number of samples in class 

𝑋𝑖. If 𝑺𝑊 is non-singular, the projection matrix 𝑾𝐿𝐷𝐴 is chosen as the matrix with 

orthonormal columns which maximizes the ratio of the projected samples to the deter-

minant of the within-class scatter matrix of the projection samples, i.e.,  
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 𝑾𝐿𝐷𝐴 = argmax
𝑾

|𝑾𝑇𝑺𝐵𝑾|
|𝑾𝑇𝑺𝑊𝑾|

= [𝒘1 𝒘2 … 𝒘𝑚], (6) 

where {𝒘𝑖|𝑖 = 1, 2, … ,𝑚} is the set of generalized eigenvectors of 𝑺𝐵 and 𝑺𝑊 cor-

responding to the 𝑚 largest generalized eigenvalues {𝜆𝑖|𝑖 = 1, 2, … ,𝑚}, i.e.,  

 𝑺𝐵𝒘𝑖 = 𝜆𝑖𝑺𝑊𝒘𝑖, 𝑖 = 1, 2, … ,𝑚. (7) 

Note that there are at most 𝐶 − 1 nonzero generalized eigenvalues, and so an upper 

bound on 𝑚 is 𝐶 − 1 where 𝐶 is the number of classes.  

2.2.2  PCA+LDA Method 

In the FR problem, one difficulty is that the within-class scatter matrix 𝑺𝑊 ∈ ℝ𝑛×𝑛 is 

always singular. This is because of the fact that the rank of 𝑺𝑊 is at most 𝑁 − 𝐶, and, 

in general, the number of images in the training set 𝑁 is much smaller than the num-

ber of pixels in each image 𝑛. This means that it is possible to choose the matrix 𝑾 

such that the within-class scatter of the projected samples can be made exactly zero.  

In order to avoid the problem stated above, a combined PCA and LDA method, which 

is also called the Fisherfaces, is used by projecting the image set to a lower dimensional 

space so that the resulting within-class scatter matrix 𝑺𝑊  is non-singular. In this 

method, PCA is used to reduce the dimension of the feature space to 𝑁 − 𝐶, and then 

LDA defined by (6) is applied to reduce the dimension to 𝐶 − 1.  

More formally, 𝑾𝑃𝐶𝐴+𝐿𝐷𝐴 is given by 

 𝑾𝑃𝐶𝐴+𝐿𝐷𝐴
𝑇 = 𝑾𝑃𝐶𝐴

𝑇 𝑾𝐿𝐷𝐴
𝑇 , (8) 

where  

 𝑾𝑃𝐶𝐴 = argmax
𝑾

|𝑾𝑇𝑺𝑇𝑾|, (9) 
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 𝑾𝐿𝐷𝐴 = argmax
𝑾

|𝑾𝑇𝑾𝑃𝐶𝐴
𝑇 𝑺𝐵𝑾𝑃𝐶𝐴𝑾|

|𝑾𝑇𝑾𝑃𝐶𝐴
𝑇 𝑺𝑊𝑾𝑃𝐶𝐴𝑾|

. (10) 

Note that the optimization for 𝑾𝑃𝐶𝐴 is performed over 𝑛 × (𝑁 − 𝐶) matrices with 

orthonormal columns, while the optimization for 𝑾𝐿𝐷𝐴  is performed over (𝑁 −

𝐶) × 𝑚 matrices with orthonormal columns. In computing 𝑾𝑃𝐶𝐴, the smallest 𝐶 −

1 principal components are discarded.  

After the projecting the images into the reduced feature space, same as PCA, the clas-

sification is performed by using the nearest neighbour classifier in the feature space.  

2.3  PCA+LDA Algorithm based on Gabor Features (G-

PCA+LDA) 

2.3.1  Gabor Wavelets 

Instead of using the original grayscale image as the input in the previous two algo-

rithms, the input in this algorithm is the Gabor wavelet transformed image from the 

original one. Gabor wavelets are biologically motivated convolution kernels which are 

plane waves restricted by a Gaussian envelope function, and those kernels demonstrate 

spatial locality and orientation selectivity. In face recognition, Gabor wavelets exhibit 

robustness to moderated lighting changes, small shifts and deformations.  

The Gabor wavelets (kernels, filters) can be defined as follows[14],[15],[16]:  

 𝜓𝜇,𝜐(𝑧) = ‖𝑘𝜇,𝜐‖2

𝜎2 𝑒−
‖𝑘𝜇,𝜐‖

2‖𝑧‖2

2𝜎2 (𝑒𝑖𝑘⃗ 𝜇,𝜐𝑧 − 𝑒−𝜎2

2 ), (11) 

where 𝜇 and 𝜐 define the orientation and the scale of the Gabor kernels, 𝑧 = (𝑥, 𝑦), 

‖∙‖ denotes the norm operator, and the wave vector 𝑘𝜇,𝜐 is defined as follows:  

 𝑘𝜇,𝜐 = 𝑘𝑣𝑒𝑖𝜑𝜇, (12) 
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where 𝑘𝑣 = 𝑘𝑚𝑎𝑥/𝑓𝜐 and 𝜑𝜇 = 𝜋𝜇/8. 𝑘𝑚𝑎𝑥 is maximum frequency, and 𝑓 is the 

spacing factor between kernels in the frequency domain[16].  

The Gabor kernels in (11) are all self-similar since they can be generated from one 

filter, the mother wavelet, by scaling and rotation via the wave vector 𝑘𝜇,𝜐. Each ker-

nel is a product of a Gaussian envelope and a complex plane wave, while the first term 

in the brackets in (11) is determines the oscillatory part of the kernel and the second 

term compensates for the DC value. The effect of the DC term becomes negligible 

when the parameter 𝜎, which determines the ratio of the Gaussian window width to 

wavelength, has sufficiently large values.  

 
Figure 2-1 The real part of Gabor kernels at five scales and eight orientations. 

Retrieved from [6]. 

 

Figure 2-2 The magnitude of Gabor kernels at five different scales. 

Retrieved from [6]. 

In most cases one would use Gabor wavelets of five different scales, 𝜈 ∈ {0, 1, … , 4}, 

and eight orientations, 𝜇 ∈ {0, 1, … , 7}, Figure 2-1 and Figure 2-2 shows the real part 

of the Gabor kernels at five scales and eight orientations and the magnitude of five 
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different scales, with the following parameters1: 𝜎 = 2𝜋, 𝑘𝑚𝑎𝑥 = 𝜋/2, and 𝑓 = √2. 

The kernels exhibit desirable characteristics of spatial frequency, spatial locality, and 

orientation selectivity.  

2.3.2  Gabor Feature Representation 

The Gabor wavelet representation of an image is the convolution of the image with a 

family of Gabor kernels as defined by (11). Let 𝐼(𝑥, 𝑦) be the grayscale image. The 

convolution of image 𝐼 and a Gabor kernel 𝜓𝜇,𝜐 is defined as follows[6]:  

 𝐺𝜇,𝜐(𝑧) = 𝐼(𝑧) ∗ 𝜓𝜇,𝜐(𝑧), (13) 

where 𝑧 = (𝑥, 𝑦), ∗ denotes the convolution operator, and 𝐺𝜇,𝜐(𝑧) is the convolu-

tion result corresponding to the Gabor kernel at orientation 𝜇 and scale 𝜐. Therefore, 

the set 𝑆 = {𝐺𝜇,𝜐(𝑧) |𝜇 ∈ {0, 1, … , 4}, 𝜈 ∈ {0, 1, … , 4}} forms the Gabor wavelet rep-

resentation of the image 𝐼(𝑧).  

Applying the convolution theorem, we can derive each 𝐺𝜇,𝜐(𝑧) for (13) via the Fast 

Fourier Transform (FFT), i.e.  

 ℱ{𝐺𝜇,𝜐(𝑧)} = ℱ{𝐼(𝑧)}ℱ{𝜓𝜇,𝜐(𝑧)}, (14) 

 𝐺𝜇,𝜐(𝑧) = ℱ−1{ℱ{𝐼(𝑧)}ℱ{𝜓𝜇,𝜐(𝑧)}}, (15) 

where ℱ{∙} and ℱ−1{∙} denote the Fourier and inverse Fourier transform, respec-

tively.  

                                                 

1 These parameters can be adjusted according to the size of the normalized face images.  
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Figure 2-3 The real part of the Gabor wavelet representation. 

Retrieved from [6].  

 
Figure 2-4 The magnitude of the Gabor wavelet representation. 

Retrieved from [6]. 

Figure 2-3 and Figure 2-4 show the Gabor wavelet representation1 of the real part and 

the magnitude, respectively, of a sample image. These representation results display 

scale, locality, and orientation properties corresponding to those displayed by the Ga-

bor wavelets in Figure 2-1 and Figure 2-2. To encompass different spatial frequencies 

                                                 

1 Note that, because the phase information of the transform is time-varying, only the magnitude of the Gabor 

wavelet representation is used as the feature extraction result instead of the complex representation, which is known 

as the Gabor Magnitude Pictures (GMPs).  
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(scales), spatial localities, and orientation selectivity, all these representation results 

are concatenated to derive an augmented feature vector 𝐹𝐺 . Before the concatenation, 

each representation is normalized to zero mean and unit variance. Then, a vector out 

of the 𝐺𝜇,𝜐(𝑧) is constructed by concatenating its rows (or columns). The augmented 

Gabor feature vector 𝐹𝐺  is defined as follows[6]:  

 𝐹𝐺 = [𝐺0,0
𝑇 𝐺0,1

𝑇 … 𝐺4,7
𝑇 ]

𝑇
, (16) 

where (∙)𝑇 is the transpose operator. The augmented Gabor feature vector thus en-

compasses all the elements of the Gabor wavelet representation set, 𝑆 =

{𝐺𝜇,𝜐(𝑧) |𝜇 ∈ {0, 1, … , 4}, 𝜈 ∈ {0, 1, … , 4}}, as important discriminating information.  

2.3.3  G-PCA+LDA Method 

The G-PCA+LDA method[6] is similar to the PCA+LDA method. The only difference 

is that the G-PCA+LDA method uses Gabor features instead of the image-pixel fea-

tures. After projecting the augmented Gabor feature vectors into the reduced feature 

space using the projection matrix 𝑾𝑃𝐶𝐴+𝐿𝐷𝐴, the nearest neighbour classifier is used 

to classify the face images.  

2.4  Local Gabor Binary Pattern Histogram Sequence 

(LGBPHS) 

The overall framework of the face-image representation approached based on the Lo-

cal Gabor Binary Pattern Histogram Sequence is illustrated in Figure 2-5. In this ap-

proach, a face image is modelled as a “histogram sequence” by the following proce-

dure[7]: (1) an input face image is normalized and transformed to obtain multiple Gabor 

Magnitude Pictures (GMPs) in the frequency domain by applying multi-scale and 

multi-orientation Gabor filters; (2) each GMP is converted to a Local Gabor Binary 
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Pattern (LGBP) map; (3) each LGBP map is further divided into non-overlapping rec-

tangular regions with a specific size, and histogram is computed for each region; and 

(4) the LGBP histograms of all the LGBP maps are concatenated to form the final 

histogram sequence as the model of the face. The following sub-sections will describe 

the procedure in detail.  

Gabor
Filter LBP

Pixel Image

GMPs LGBP Maps

LGBPHS

... ...

...

...

...

...

 

Figure 2-5 Framework of the LGBPHS approach. 

Adapted from [7]. 

2.4.1  Gabor Magnitude Picture (GMP) 

The Gabor Magnitude Picture is the magnitude of the Gabor wavelet representation. 

Gabor wavelets and Gabor feature representation are introduced in Section 2.3.1-2. In 

the LGBPHS approach, the same Gabor kernels are used and for each Gabor kernel, 

one magnitude value will be computed at each pixel position, which will totally result 

in 40 Gabor Magnitude Pictures (GMPs), which are denoted as follows[7]:  

 {𝐺𝑀𝑃𝜇,𝜐|𝜇 ∈ {0, 1, … , 4}, 𝜈 ∈ {0, 1, … , 4}}. (17) 

2.4.2  Local Gabor Binary Pattern (LGBP) 

The magnitude values of the Gabor transform change very slowly with displacement, 

so they can be further encoded. In order to enhance the information in the GMPs, the 

magnitude values are encoded with Local Binary Pattern (LBP) operator. The original 



15 

 

LBP operator labels the pixels of an image by thresholding the 3 × 3-neighbourhood 

of each pixel {𝑓𝑝|𝑝 = 0, 1, … , 7} with the centre value 𝑓𝑐 and considering the result 

as a binary number[17], i.e.  

 𝑆(𝑓𝑝 − 𝑓𝑐) = 𝑓(𝑥) = {
1, 𝑓𝑝 ≥ 𝑓𝑐
0, 𝑓𝑝 < 𝑓𝑐

. (18) 

Then, by assigning a binomial factor 2𝑝 for each 𝑆(𝑓𝑝 − 𝑓𝑐), the LBP pattern at the 

pixel is achieved as  

 𝐿𝐵𝑃 = ∑ 𝑆(𝑓𝑝 − 𝑓𝑐) 2𝑝7
𝑝=0 , (19) 

which characterizes the spatial structure of the local image texture. The operator 

𝐿𝐺𝐵𝑃 denotes the LBP operates on GMP. The transform result at position (𝑥, 𝑦) of 

𝐺𝑀𝑃𝜇,𝜐 is denoted as 𝐿𝐺𝐵𝑃𝜇,𝜐(𝑥, 𝑦), which composes the 𝐿𝐺𝐵𝑃𝜇,𝜐 map[7].  

2.4.3  LGBP Histogram Sequence 

FR under varying imaging conditions such as illumination and expression is a very 

difficult problem. Usually, the variations will appear more on some specific regions in 

face image. Therefore, local feature histogram is exploited to summarize the region 

property of the LGBPs by the following procedure: (1) each LGBP map is spatially 

divided into multiple non-overlapping regions; (2) histogram is extracted from each 

region; and (3) all the histograms estimated from the regions of all the LGBP maps are 

concatenated into a single histogram sequence to represent the given face image. The 

above process is formulated as follows[7]:  

The histogram ℎ𝑖 of an image 𝐼(𝑥, 𝑦) with grey levels in the range [0, 𝐿 − 1] could 

be defined as 
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 ℎ𝑖 = ∑ 𝐶𝑜𝑚𝑝{𝐼(𝑥, 𝑦) , 𝑖}(𝑥,𝑦) , 𝑖 = 0, 1, … , 𝐿 − 1, (20) 

where 𝑖 is the 𝑖-th grey level, ℎ𝑖 is the number of pixels in the image with grey level 

𝑖 and 

 𝐶𝑜𝑚𝑝{𝑎, 𝑏} = {1, 𝑎 = 𝑏
0, 𝑎 ≠ 𝑏. (21) 

Assume each LGBP map is divided into 𝑚 regions 𝑅0, 𝑅1, … , 𝑅𝑚−1. The histogram 

of 𝑟-th region of the specific LGBP map is computed by 

 𝐻𝜇,𝜐,𝑟 = (ℎ𝜇,𝜐,𝑟,0, ℎ𝜇,𝜐,𝑟,1, … , ℎ𝜇,𝜐,𝑟,𝐿−1), (22) 

where 

 ℎ𝜇,𝜐,𝑟,𝑖 = ∑ 𝐶𝑜𝑚𝑝{𝐿𝐺𝐵𝑃𝜇,𝜐(𝑥, 𝑦) , 𝑖}(𝑥,𝑦)∈𝑅𝑟 , (23) 

Finally, the histogram pieces computed from the regions of all the 40 LGBP maps are 

concatenated to a histogram sequence, 𝐹𝐿𝐺𝐵𝑃𝐻𝑆, as the final face representation, i.e.  

 𝐹𝐿𝐺𝐵𝑃𝐻𝑆 = (𝐻0,0,0, … , 𝐻0,0,𝑚−1, 𝐻0,1,0, … , 𝐻0,1,𝑚−1, … ,𝐻7,4,𝑚−1). (24) 

2.4.4  Direct LGBPHS Matching 

For histogram matching[18], the histogram intersection 𝛹(𝐻1,𝐻2) is used as the sim-

ilarity measurement of two histograms[19], i.e.  

 𝛹(𝐻1, 𝐻2) = ∑ min(ℎ𝑖
1, ℎ𝑖

2)𝑀
𝑖=1 , (25) 

where ℎ1 and ℎ2 are two histograms, and 𝑀 is the number of bins in the histogram. 

The intuitive motivation for this measurement is the calculation of the common part of 

two histograms. Using this measurement, the similarity of two face images based on 
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the LGBPHS face representation is computed by 

 Sim(𝐹𝐿𝐺𝐵𝑃𝐻𝑆
1 , 𝐹𝐿𝐺𝐵𝑃𝐻𝑆

2 ) = ∑ ∑ ∑ 𝛹(𝐻𝜇,𝜈,𝑟
1 , 𝐻𝜇,𝜈,𝑟

2 )𝑚−1
𝑟=0

4
𝜈=0

7
𝜇=0 , (26) 

where 

 𝐹𝐿𝐺𝐵𝑃𝐻𝑆
1 = (𝐻0,0,0

1 ,… , 𝐻0,0,𝑚−1
1 , 𝐻0,1,0

1 ,… , 𝐻0,1,𝑚−1
1 , … , 𝐻7,4,𝑚−1

1 ), (27) 

 𝐹𝐿𝐺𝐵𝑃𝐻𝑆
2 = (𝐻0,0,0

2 ,… , 𝐻0,0,𝑚−1
2 , 𝐻0,1,0

2 ,… , 𝐻0,1,𝑚−1
2 , … , 𝐻7,4,𝑚−1

2 ). (28) 

Given the histogram sequence, the computation of (26) is very efficient, since there is 

no float multiplication operator in the procedure. In addition, from the computation 

procedure of both the LGBPHS and the similarity measurement, it is clear that no sta-

tistical or learning stage is involved, which has naturally obviated the inherited gener-

alizability problem based on the statistical learning approaches.   
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Chapter 3  Baseline Super-Resolution Methods 

3.1  Bicubic Interpolation 

In image processing, bicubic interpolation is often chosen over bilinear interpolation 

or nearest neighbour in image resampling, when speed is not an issue. In contrast to 

bilinear interpolation, which only takes 4 pixels (2-by-2) into account, bicubic inter-

polation considers 16 pixels (4-by-4). Images resampled with bicubic interpolation are 

smoother and have fewer interpolation artefacts[20].  

Suppose the function values 𝑓 and the derivatives 𝑓𝑥, 𝑓𝑦 and 𝑓𝑥𝑦 are known at the 

four corners (0,0), (1,0), (0,1), and (1,1) of the unit square. The interpolated sur-

face can then be written as:  

 𝑝(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗3
𝑗=0

3
𝑖=0 . (29) 

The interpolation problem consists of determining the 16 coefficients 𝑎𝑖𝑗. Matching 

𝑝(𝑥, 𝑦) with the function values yields four equations:  

𝑓(0,0) = 𝑝(0,0) = 𝑎00, 

𝑓(1,0) = 𝑝(1,0) = 𝑎00 + 𝑎10 + 𝑎20 + 𝑎30, 

𝑓(0,1) = 𝑝(0,1) = 𝑎00 + 𝑎01 + 𝑎02 + 𝑎03, 

𝑓(1,1) = 𝑝(1,1) = ∑ ∑ 𝑎𝑖𝑗
3
𝑗=0

3
𝑖=0 , 

Likewise, eight equations for the derivatives in the 𝑥-direction and the 𝑦-direction:  

𝑓𝑥(0,0) = 𝑝𝑥(0,0) = 𝑎10, 

𝑓𝑥(1,0) = 𝑝𝑥(1,0) = 𝑎10 + 2𝑎20 + 3𝑎30, 

𝑓𝑥(0,1) = 𝑝𝑥(0,1) = 𝑎10 + 𝑎11 + 𝑎12 + 𝑎13, 
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𝑓𝑥(1,1) = 𝑝𝑥(1,1) = ∑ ∑ 𝑎𝑖𝑗𝑖3
𝑗=0

3
𝑖=0 , 

𝑓𝑦(0,0) = 𝑝𝑦(0,0) = 𝑎01, 

𝑓𝑦(1,0) = 𝑝𝑦(1,0) = 𝑎01 + 𝑎11 + 𝑎21 + 𝑎31, 

𝑓𝑦(0,1) = 𝑝𝑦(0,1) = 𝑎01 + 2𝑎02 + 3𝑎03, 

𝑓𝑦(1,1) = 𝑝𝑦(1,1) = ∑ ∑ 𝑎𝑖𝑗𝑗3
𝑗=0

3
𝑖=0 , 

and four equations for the cross derivative 𝑓𝑥𝑦:  

𝑓𝑥𝑦(0,0) = 𝑝𝑥𝑦(0,0) = 𝑎11, 

𝑓𝑥𝑦(1,0) = 𝑝𝑥𝑦(1,0) = 𝑎11 + 2𝑎21 + 3𝑎31, 

𝑓𝑥𝑦(0,1) = 𝑝𝑥𝑦(0,1) = 𝑎11 + 2𝑎12 + 3𝑎13, 

𝑓𝑥𝑦(1,1) = 𝑝𝑥𝑦(1,1) = ∑ ∑ 𝑎𝑖𝑗𝑖𝑗3
𝑗=0

3
𝑖=0 , 

where the expressions above have used the following identities:  

 𝑝𝑥(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑖𝑥𝑖−1𝑦𝑗3
𝑗=0

3
𝑖=0 , (30) 

 𝑝𝑦(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑗𝑦𝑗−13
𝑗=0

3
𝑖=0 , (31) 

 𝑝𝑥𝑦(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑖𝑥𝑖−1𝑗𝑦𝑗−13
𝑗=0

3
𝑖=0 . (32) 

This procedure yields a surface 𝑝(𝑥, 𝑦) on the unit square [0,1] × [0,1] which is 

continuous and with continuous derivatives. Bicubic interpolation on an arbitrarily 

sized regular grid can then be accomplished by patching together such bicubic surfaces, 

ensuring that the derivatives match on the boundaries.  

If the derivatives are unknown, they are typically approximated from the function val-

ues at points neighbouring the corners of the unit square, e.g. using finite differences.  

Grouping the unknown parameters 𝑎𝑖𝑗 in a vector:  
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𝛼 = [𝑎00 𝑎10 𝑎20 𝑎30 𝑎01 𝑎11 𝑎21 𝑎31 𝑎02 𝑎12 𝑎22 𝑎32 𝑎03 𝑎13 𝑎23 𝑎33]𝑇, 

and letting 

𝑥 = [𝐹𝑇 𝐹𝑥𝑇 𝐹𝑦𝑇 𝐹𝑥𝑦
𝑇 ]

𝑇
, 

where  

𝐹 = [𝑓(0,0) 𝑓(1,0) 𝑓(0,1) 𝑓(1,1)]𝑇, 

𝐹𝑥 = [𝑓𝑥(0,0) 𝑓𝑥(1,0) 𝑓𝑥(0,1) 𝑓𝑥(1,1)]𝑇, 

𝐹𝑦 = [𝑓𝑦(0,0) 𝑓𝑦(1,0) 𝑓𝑦(0,1) 𝑓𝑦(1,1)]𝑇, 

𝐹𝑥𝑦 = [𝑓𝑥𝑦(0,0) 𝑓𝑥𝑦(1,0) 𝑓𝑥𝑦(0,1) 𝑓𝑥𝑦(1,1)]𝑇, 

the problem can be reformulated into a linear equation:  

 𝐴𝛼 = 𝑥, (33) 

where the inverse of 𝐴 is:  

𝐴−1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−3 3 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0
2 −2 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −3 3 0 0 −2 −1 0 0
0 0 0 0 0 0 0 0 2 −2 0 0 1 1 0 0

−3 0 3 0 0 0 0 0 −2 0 −1 0 0 0 0 0
0 0 0 0 −3 0 3 0 0 0 0 0 −2 0 −1 0
9 −9 −9 9 6 3 −6 −3 6 −6 3 −3 4 2 2 1

−6 6 6 −6 −3 −3 3 3 −4 4 −2 2 −2 −2 −1 −1
2 0 −2 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 −2 0 0 0 0 0 1 0 1 0

−6 6 6 −6 −4 −2 4 2 −3 3 −3 3 −2 −1 −2 −1
4 −4 −4 4 2 2 −2 −2 2 −2 2 −2 1 1 1 1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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3.2  Eigentransformation 

3.2.1  A Review of PCA 

PCA represents face images using a weighted combination of eigenfaces. Let a training 

set of HR images and the corresponding LR images denoted by[10]:  

 
{ℎ⃗ 𝑖}𝑖=1

𝑀
= [ℎ⃗ 1, … , ℎ⃗ 𝑀] ∈ ℝ𝑁𝐻×𝑀, 

{𝑙 𝑖}𝑖=1

𝑀
= [𝑙 1,… , 𝑙 𝑀] ∈ ℝ𝑁𝐿×𝑀, 

(34) 

where ℎ⃗ 𝑖 and 𝑙 𝑖 are the corresponding HR and LR image vector, 𝑁𝐻 and 𝑁𝐿 are 

the numbers of HR and LR image pixels, respectively, and 𝑀 is the number of train-

ing samples.  

The mean faces are computed as:  

 𝑚⃗⃗ ℎ = 1
𝑀

∑ ℎ⃗ 𝑖𝑀
𝑖=1 , 𝑚⃗⃗ 𝑙 = 1

𝑀
∑ 𝑙 𝑖𝑀

𝑖=1 . (35) 

For LR images, removing the mean faces from each image, we have:  

 𝐿 = [𝑙 1 − 𝑚⃗⃗ 𝑙, … , 𝑙 𝑀 − 𝑚⃗⃗ 𝑙] = [𝑙 1′ , … , 𝑙 𝑀′ ]. (36) 

A set of eigenvectors, also called eigenfaces, are computed from the eigenvectors of 

the ensemble covariance matrix:  

 𝐶 = ∑ (𝑙 𝑖 − 𝑚⃗⃗ 𝑙)(𝑙 𝑖 − 𝑚⃗⃗ 𝑙)
𝑇𝑀

𝑖=1 = 𝐿𝐿𝑇. (37) 

Directly computing the eigenvectors of 𝐶 is not practical because of the large size of 

the matrix. Alternatively, the eigenvectors of a smaller matrix 𝑅 = 𝐿𝑇𝐿 can be first 
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computed[21]:  

 (𝐿𝑇𝐿)𝑉𝑙 = 𝑉𝑙Λ𝑙, (38) 

where 𝑉𝑙 is the eigenvector matrix and Λ𝑙 is the eigenvalue matrix.  

Multiplying both sides by 𝐿, we have:  

 (𝐿𝐿𝑇)𝐿𝑉𝑙 = 𝐿𝑉𝑙Λ𝑙. (39) 

Therefore, the orthonormal eigenvector matrix of 𝐶 = 𝐿𝐿𝑇 can be computed from:  

 𝐸𝑙 = 𝐿𝑉𝑙Λ𝑙
−1

2. (40) 

For a novel face image 𝑥 𝑙, a weight vector can be computed by projecting it onto the 

eigenfaces:  

 𝑤⃗⃗ 𝑙 = 𝐸𝑙
𝑇(𝑥 𝑙 − 𝑚⃗⃗ 𝑙). (41) 

This is a face representation based on eigenfaces. A face can be reconstructed from 𝐾 

eigenfaces, 𝐸𝑙 = [𝑒1, … , 𝑒𝐾]:  

 𝑟 𝑙 = 𝐸𝑙𝑤⃗⃗ 𝑙 + 𝑚⃗⃗ 𝑙. (42) 

3.2.2  Eigentransformation 

For eigentransformation[10], a training set containing LR face images, and the corre-

sponding HR face images are used. Following the previous discussion, applying PCA 

to the input LR face image 𝑥 𝑙 using (49) and (51), the reconstructed face image can 

be represented by:  

 𝑟 𝑙 = 𝐿𝑉𝑙Λ𝑙
−1

2𝑤⃗⃗ 𝑙 + 𝑚⃗⃗ 𝑙 = 𝐿𝑐 + 𝑚⃗⃗ 𝑙, (43) 
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where 𝑐 = 𝑉𝑙𝛬𝑙
−1

2𝑤⃗⃗ 𝑙 = [𝑐1, … , 𝑐𝑀]𝑇. Equation (52) can be rewritten as:  

 𝑟 𝑙 = 𝐿𝑐 + 𝑚⃗⃗ 𝑙 = ∑ 𝑐𝑖𝑙 𝑖′𝑀
𝑖=1 + 𝑚⃗⃗ 𝑙. (44) 

This shows that the input LR face image can be reconstructed from the optimal linear 

combination of 𝑀 LR training face images. Here, 𝑐  describes the weight that each 

training face contributes in reconstructing the input face. The sample face that is more 

similar to the input face has a greater weight contribution. Replacing each LR resolu-

tion image 𝑙 𝑖′ by its corresponding HR version ℎ⃗ 𝑖′, and replacing 𝑚⃗⃗ 𝑙 with the HR 

mean face 𝑚⃗⃗ ℎ, we have:  

 𝑥 ℎ = ∑ 𝑐𝑖ℎ⃗ 𝑖′𝑀
𝑖=1 + 𝑚⃗⃗ ℎ. (45) 

𝑥 ℎ is expected to be an approximation to the real HR face image. However, due to the 

combination coefficient 𝑐𝑖  is not computed from the HR training data, some non-

face-like distortions may be involved. These non-face-like distortions can be reduced 

by reconstructing 𝑥 ℎ  from the HR eigenfaces. Let 𝐸ℎ  and 𝛬ℎ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝐾) 

be the eigenface and eigenvalue matrices computed from the HR training images. The 

principal components of 𝑥 ℎ projecting on the HR eigenfaces are:  

 𝑤⃗⃗ ℎ = 𝐸ℎ
𝑇(𝑥 ℎ − 𝑚⃗⃗ ℎ). (46) 

The eigenvalue 𝜆𝑖 is variance of HR face images on the 𝑖th eigenface. If the principal 

component 𝑤ℎ(𝑖) is much larger than 𝜆𝑖, non-face-like distortion may be involved 

for the 𝑖th eigenface dimension. To reduce the distortion, we apply constraints on the 

principal components according to the eigenvalues:  

 𝑤⃗⃗ ℎ′ (𝑖) = {
𝑤ℎ(𝑖) , |𝑤ℎ(𝑖)| ≤ 𝑎√𝜆𝑖

sign(𝑤ℎ(𝑖)) 𝑎√𝜆𝑖, |𝑤ℎ(𝑖)| > 𝑎√𝜆𝑖
, 𝑎 > 0, (47) 
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where 𝑎√𝜆𝑖 is used to bound the principal components and 𝑎 is a positive scale pa-

rameter. The final super-resolved face image is reconstructed by:  

 𝑥 ℎ′ = 𝐸ℎ𝑤⃗⃗ ℎ′ + 𝑚⃗⃗ ℎ. (48) 

The diagram of the algorithm based on eigentransformation is shown in Figure 3-1. 

When a LR image 𝑥 𝑙 is input, it is approximated by a linear combination of the LR 

images using the PCA method, and a set of coefficients [𝑐1,… , 𝑐𝑀]𝑇 on the training 

set is obtained. Keeping the coefficients and replacing the LR training images with the 

corresponding HR ones, a new HR face image can be synthesized. The synthesized 

face image is projected onto the HR eigenfaces and reconstructed with constraints on 

the principal components. This transformation procedure is called eigentransformation, 

since it uses the eigenfaces to transform the input image to output result.  

 

Figure 3-1 System diagram using eigentransformation for super-resolution. 

Retrieved from [10]. 



25 

 

3.3  Coherent Local Linear Reconstruction (CLLR) 

3.3.1  Canonical Correlation Analysis (CCA) 

CCA is a way of measuring the linear correlation between two sets of variables1. CCA 

finds two bases, one for each variable, in which the corresponding correlation coeffi-

cients of the two sets of variables are maximized[12],[22]. The LR and HR variables are 

transformed into correlated spaces, called coherent subspaces, when projected into 

these new bases.  

Suppose we are given two sets of 𝑚 vectors 𝑃 and 𝑄2 with zero means:  

 
𝑃 = {𝑃𝑗}𝑗=1

𝑚
= [𝑃1, … , 𝑃𝑚], 

𝑄 = {𝑄𝑗}𝑗=1
𝑚

= [𝑄1,… , 𝑄𝑚]. 
(49) 

The transform vectors 𝑢 and 𝑣 are defined as: 

 
𝑢 = 𝑊𝑝

𝑇𝑃, 

𝑣 = 𝑊𝑞
𝑇𝑄. 

(50) 

where 𝑊𝑝 and 𝑊𝑞 denote the corresponding basis vectors in the coherent subspaces. 

The objective of CCA is to obtain basis vectors 𝑊𝑝 and 𝑊𝑞 which maximize the cor-

relation coefficient of 𝑢 and 𝑣:  

                                                 

1 In this SR context, the variables are vectors each of which represents a single LR or HR image, such as its PCA 

coefficients, or residual image patches.  

2 In this SR problem, 𝑃𝑗 and 𝑄𝑗, respectively, represent the PCA coefficients of LR and HR versions of a face 

image during global face recognition, or LR and HR residual patches when performing residual compensation.  
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 𝜌(𝑢, 𝑣) = 𝑊𝑝
𝑇𝐶𝑃𝑄𝑊𝑞

√𝑊𝑝
𝑇𝐶𝑃𝑃𝑊𝑝𝑊𝑞

𝑇𝐶𝑄𝑄𝑊𝑞

, (51) 

where 𝐶𝑃𝑃 = 𝐸[𝑃𝑃𝑇] and 𝐶𝑄𝑄 = 𝐸[𝑄𝑄𝑇] represent the within-set covariance ma-

trices of 𝑃 and 𝑄 respectively, while 𝐶𝑃𝑄 = 𝐸[𝑃𝑄𝑇] and 𝐶𝑄𝑃 = 𝐸[𝑄𝑃𝑇] denote 

their covariance matrices. 𝐸[∙] is mathematical expectation.  

To find 𝑊𝑝 and 𝑊𝑞, we first compute:  

 
𝑅1 = 𝐶𝑃𝑃

−1𝐶𝑃𝑄𝐶𝑄𝑄
−1𝐶𝑄𝑃, 

𝑅2 = 𝐶𝑄𝑄
−1𝐶𝑄𝑃𝐶𝑃𝑃

−1𝐶𝑃𝑄. 
(52) 

It can then be shown that the eigenvectors of 𝑅1 and 𝑅2 give the two desired sets of 

basis vectors 𝑊𝑝 and 𝑊𝑞
[12].  

3.3.2  CLLR-SR Algorithm 

The coherent local linear reconstruction super-resolution (CLLR-SR) method per-

forms neighbourhood-based reconstruction in the coherent subspaces using a two-step 

SR framework, as illustrated in Figure 3-2[11]. LR and HR image features, either PCA 

coefficients or residual patch vectors, can be projected into a coherent subspace using 

the base vectors obtained via CCA. CCA is used in both steps of the face SR algorithm 

to improve the similarity between the HR and LR feature neighbourhoods.  

In the first step, both LR and HR images are projected into the PCA subspaces and the 

PCA coefficients are considered to be the set of face features. To promote similarity of 

neighbourhood structures, the LR and HR face features are projected into coherent 

subspaces using the basis vectors calculated from the PCA coefficients from training 

samples. Given a novel LR image, neighbourhood-based reconstruction can be used 

with these coefficients to obtain the HR face features from LR and HR face features 
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of the training faces in the coherent subspace.  

 

Figure 3-2 Architecture of the CLLR-SR algorithm. 

(a) Global face reconstruction; (b) residual compensation.  

Retrieved from [11]. 

In order to further recover high-frequency information, residual face images are di-

vided into overlapping patches which are used as the face features in the second step. 

Again, coherent subspaces are learnt for LR and HR versions of each training patch. 

Then, for a novel LR image, LR patches are used in the coherent subspace to provide 

a neighbourhood-based reconstruction of each HR residual image patch from the cor-

responding input LR residual image patch. After computing all HR residual patches, 

pixels in the overlapping areas are averaged to give the overall HR residual image.1 

The final HR face image is obtained by adding the HR global face image and the re-

sidual face image.  

                                                 

1 As this is a patch-based approach, blocky artefacts may appear in the reconstructed HR images. In order to reduce 

the artefacts, the pixels in the overlapped regions are merged based on a central distance dependent smoothing filter, 

which is further explained in the subsequent section.  
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3.3.2.1  Global Reconstruction 

Let a training set of HR images and the corresponding LR images denoted by:  

 
𝑰𝐻 = {𝐼𝑖𝐻}𝑖=1

𝑚 = [𝐼1𝐻, … , 𝐼𝑚𝐻] ∈ ℝ𝑛𝐻×𝑚, 

𝑰𝐿 = {𝐼𝑖𝐿}𝑖=1
𝑚 = [𝐼1𝐿, … , 𝐼𝑚𝐿 ] ∈ ℝ𝑛𝐿×𝑚, 

(53) 

and their corresponding PCA coefficients:  

 
𝑿𝐻 = {𝑥𝑖

𝐻}𝑖=1
𝑚 = [𝑥1

𝐻, … , 𝑥𝑚
𝐻] ∈ ℝ𝑝×𝑚, 

𝑿𝐿 = {𝑥𝑖
𝐿}𝑖=1

𝑚 = [𝑥1
𝐿, … , 𝑥𝑚

𝐿 ] ∈ ℝ𝑞×𝑚. 
(54) 

During training for global reconstruction, the LR and HR face images are first pro-

jected into the PCA subspaces:  

 
𝑥𝑖

𝐻 = (𝑾𝑃𝐶𝐴
𝐻 )𝑇(𝐼𝑖𝐻 − 𝜇𝐻), 

𝑥𝑖
𝐿 = (𝑾𝑃𝐶𝐴

𝐿 )𝐿(𝐼𝑖𝐿 − 𝜇𝐿), 
(55) 

where 𝜇𝐻 and 𝜇𝐿 are the HR and LR mean faces, and 𝑾𝑃𝐶𝐴
𝐻  and 𝑾𝑃𝐶𝐴

𝐿  are the 

PCA projection matrices for HR and LR training images respectively.  

Then, CCA is applied to capture the coherent subspaces relating the two data sets 𝑿𝐻 

and 𝑿𝐿. First, the two data sets are subtracted by their mean values 𝑥̅𝐻 and 𝑥̅𝐿, re-

spectively, to give the centralized data sets 𝑿̂𝐻 = [𝑥̂1
𝐻, … , 𝑥̂𝑚

𝐻] and 𝑿̂𝐿 = [𝑥̂1
𝐿, … , 𝑥̂𝑚

𝐿 ]. 

CCA finds two basis vectors 𝑉𝐻 and 𝑉𝐿 for the data sets 𝑿̂𝐻 and 𝑿̂𝐿 in order to 

maximize the correlation coefficient between vectors 𝑪𝐻 = (𝑉𝐻)𝑇𝑿̂𝐻  and 𝑪𝐿 =

(𝑉𝐿)𝑇𝑿̂𝐿. In other words, we maximize:  

 𝜌 =
𝐸[𝑪𝐻(𝑪𝐿)

𝑇
]

√𝐸[(𝑪𝐻)2] 𝐸[(𝑪𝐿)2]
=

𝐸[(𝑉𝐻)
𝑇
𝑿̂𝐻(𝑿̂𝐿)𝑇𝑉𝐿]

√𝐸[(𝑉𝐻)𝑇𝑿̂𝐻(𝑿̂𝐻)𝑇𝑉𝐻]𝐸[(𝑉𝐿)𝑇𝑿̂𝐿(𝑿̂𝐿)𝑇𝑉𝐿]
. (56) 
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Based on (61), where  

C𝑃𝑃 = 𝐸[𝑿̂𝐻(𝑿̂𝐿)𝑇], 

C𝑃𝑄 = 𝐸[𝑿̂𝐻(𝑿̂𝐿)𝑇], 

C𝑄𝑃 = 𝐸[𝑿̂𝐿(𝑿̂𝐻)𝑇], 

C𝑄𝑄 = 𝐸[𝑿̂𝐿(𝑿̂𝐿)𝑇], 

the basis vectors 𝑉𝐻 and 𝑉𝐿 in (65) are calculated: these are the eigenvectors of 𝑅1 

and 𝑅2.  

Transforming the PCA coefficients 𝑿𝐻, 𝑿𝐿 into the coherent subspaces using the ba-

sis vectors gives the corresponding projected CCA coefficient sets 𝑪𝐻 = {𝑐𝑖
𝐻}𝑖=1

𝑚  and 

𝑪𝐿 = {𝑐𝑖
𝐿}𝑖=1

𝑚 :  

 
𝑐𝑖
𝐻 = (𝑉𝐻)𝑇𝑥̂𝑖

𝐻, 

𝑐𝑖
𝐿 = (𝑉𝐿)𝑇𝑥̂𝑖

𝐿. 
(57) 

There is a similarity between the internal structures of the two data sets 𝑿𝐻 and 𝑿𝐿, 

and after transforming them into coherent subspaces, the correlation between the two 

sets is maximized. Neighbourhoods are more consistent between 𝑪𝐻 and 𝑪𝐿: CCA 

provides an optimal linear relationship between the neighbourhood structures for the 

two sets.  

To perform reconstruction, for a novel LR face image 𝐼𝑙, its PCA coefficient vector 

𝑥𝑙 are computed:  

 𝑥𝑙 = (𝑾𝑃𝐶𝐴
𝐿 )𝑇(𝐼𝑙 − 𝜇𝐿). (58) 

Then 𝑥𝑙 is projected into coherent subspace using:  
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 𝑐𝑙 = (𝑉𝐿)𝑇(𝑥𝑙 − 𝑥̅𝐿). (59) 

For 𝑐𝑙, we seek 𝐾𝐺-nearest neighbours {𝑐𝑖
𝐿}𝑖=1

𝐾𝐺
 in 𝐶𝐿 and corresponding optimal 

weights 𝑊𝐺 = {𝑤𝑖
𝐺}𝑖=1

𝐾𝐺
 which minimize the reconstruction error:  

 𝜀 = ‖𝑐𝑙 − ∑ 𝑤𝑖
𝐺𝑐𝑖

𝐿𝐾𝐺
𝑖=1 ‖

2
, (60) 

subject to the constraint:  

 ∑ 𝑤𝑖
𝐺𝐾𝐺

𝑖=1 = 1. (61) 

Minimizing the above objective function is a constrained least squares problem[13]. To 

solve this problem, define the local Gram matrix as:  

 𝐺𝑖𝑗 = (𝑐𝑙 − 𝑐𝑖
𝐿)(𝑐𝑙 − 𝑐𝑗𝐿). (62) 

By reconstruction, this Gram matrix is symmetric and semipositive definite. The re-

construction error can be minimized analytically using a Lagrange multiplier to en-

force the constraint in (70). In terms of the inverse Gram matrix, the optimal weights 

are given by:  

 𝑤𝑖
𝐺 =

∑ 𝐺𝑖𝑗
−1

𝑗

∑ 𝐺𝑙𝑚
−1

𝑙𝑚
. (63) 

The solution as written in (72), appears to require an explicit inversion of the Gram 

matrix. In practice, a more efficient and numerically stable way to minimize the error 

(which yields the same result as above) is simply to solve the linear system of equa-

tions:  

 ∑ 𝐺𝑖𝑗𝑤𝑗
𝐺

𝑗 = 1, (64) 



31 

 

and then to rescale the weights so that they sum to one.  

In unusual cases, it can arise that the Gram matrix in (71) is singular or nearly singular, 

for example, when there are more neighbours than input dimensions, or when the data 

points are not in general position. In this case, the least square problem for finding the 

weights does not have a unique solution, and the Gram matrix must be conditioned 

(before solving the linear system) by adding a small multiple of the identity matrix[13]:  

𝐺𝑖𝑗 ← 𝐺𝑖𝑗 + 𝛿𝑖𝑗 (𝛥2

𝐾𝐺) 𝑇𝑟(𝐺), 

where  

𝛿𝑖𝑗 = {1, 𝑖 = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

𝑇𝑟(𝐺) denotes the trace of 𝐺, and 𝛥2 ≪ 1. This amounts to adding a regularization 

term to the reconstruction cost that measures the summed squared magnitude of the 

weights.1  

The regularization term acts to penalize large weights that exploit correlations beyond 

some level of precision in the data sampling process. It may also introduce some ro-

bustness to noise and outliers. This form of regularization (with ∆= 0.1) is used in the 

experiments.  

After computing the optimal weights, by applying these weights to {𝑐𝑖
𝐻}𝑖=1

𝐾𝐺
 in 𝐶𝐻, 

the corresponding HR image feature in the coherent subspace can be reconstructed:  

 𝑐ℎ = ∑ 𝑤𝑖
𝐺𝑐𝑖

𝐻𝐾𝐺
𝑖=1 . (65) 

                                                 

1 One can also consider the effect of this term in the limit ∆→ 0.  
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Next, using an inverse transformation, the PCA coefficients of the corresponding HR 

face image are obtained:  

 𝑥ℎ = ((𝑉𝐻)𝑇)†𝑐ℎ + 𝑥̅𝐻, (66) 

where (∙)† denotes pseudoinverse, so ((𝑉𝐻)𝑇)† = (𝑉𝐻(𝑉𝐻)𝑇)−1𝑉𝐻.  

Finally, the HR global face image is obtained by computing:  

 𝐺ℎ = 𝑾𝑃𝐶𝐴
𝐻 𝑥ℎ + 𝜇𝐻. (67) 

3.3.2.2  Residual Compensation 

As the global face image is reconstructed from an eigenmodel, it mainly contains low 

and middle frequency components. In order to provide additional details in the output 

face image, it is necessary to carry out residual compensation on the global recon-

structed face.  

In the residual compensation step of CLLR-SR algorithm, residual face images, the 

difference between original face images and their globally reconstructed face images, 

are divided into square patches to facilitate recovery of further detail[23],[24]. Overlap-

ping patches are used in order to enforce smoothness constraints. In order to apply 

neighbourhood reconstruction to residual compensation, LR and HR image features 

should have similar locally geometries. Again, CCA is used as before, this time to 

maximize the correlation between LR and HR residual patches for residual compensa-

tion. This time, for nearest neighbour search, the current position and its eight con-

nected neighbour are considered for speed, and to enforce smoothness constraints.  

During training, for LR face images in the training set 𝑰𝐿 = [𝐼1𝐿, … , 𝐼𝑚𝐿 ], the globally 

reconstructed face images 𝑮𝐻 = [𝐺1
𝐻, … , 𝐺𝑚

𝐻] are calculated using the method in Sec-

tion 3.3.2.1. The corresponding HR residual face images are defined as:  
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 𝑅𝑖
𝐻 = 𝐼𝑖𝐻 − 𝐺𝑖

𝐻. (68) 

The training set of HR residual face images is thus 𝑹𝐻 = {𝑅𝑖
𝐻}𝑖=1

𝑚 . Similarly, define 

the LR residual face images as:  

 𝑅𝑖
𝐿 = 𝐼𝑖𝐿 − 𝐺𝑖

𝐿, (69) 

where 𝐺𝑖
𝐿 = 𝐷[𝐺𝑖

𝐻], and 𝐷[∙] represents down-sampling1. The training set of LR re-

sidual face images is in turn 𝑹𝐿 = {𝑅𝑖
𝐿}𝑖=1

𝑚 .  

Each image in the residual image training sets 𝑹𝐿 and 𝑹𝐻 is divided into overlap-

ping square patches. For novel LR face image 𝐼𝑙, the corresponding global SR face 

image is found using the method in Section 3.3.2.1. Then, based on (78), the corre-

sponding residual face image 𝑅𝑙 is obtained, which is also divided into overlapping 

patches.  

Subsequently, CCA is applied and basis vectors for training LR and HR residual 

patches are calculated for each novel LR residual patch. Then, the training LR and HR 

residual patches are projected into coherent subspaces. Next, each novel LR residual 

patch is transformed into coherent subspace by these basis vectors. Finally, neighbour-

hood-based reconstruction is used to determine the corresponding HR residual patch 

in coherent subspace.  

In detail, the residual patch vector of novel face image (𝑅𝑙)𝑗, where 𝑗 represents the 

position information of each patch, and residual training patch vectors (𝑹𝐿)𝑗  and 

(𝑹𝐻)𝑗  are transformed into coherent subspaces as (𝑅̂𝑙)𝑗 , (𝑹̂𝐿)𝑗  and (𝑹̂𝐻)𝑗 . The 

training patch vectors (𝑹𝐿)𝑗  and (𝑹𝐻)𝑗  for each LR residual patch vector (𝑅𝑙)𝑗 

                                                 

1 In the experiments, bicubic interpolation is used as the down-sampling method.  
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are the ones at the current position and its eight connected neighbouring patches, de-

termined by the LR residual patch location in the LR face image, in all patches com-

prising 𝑹𝐿 and 𝑹𝐻.  

Relying on the relatively fixed geometric structure of human face images, for each 

(𝑅̂𝑙)𝑗 in 𝑅̂𝑙, we find its 𝐾𝑅-nearest neighbours {(𝑅̂𝑖
𝐿)𝑗}𝑖=1

𝐾𝑅
 in (𝑹̂𝐿)𝑗. Then, the cor-

responding optimal weights 𝑊𝑅 = {𝑤𝑖
𝑅}𝑖=1

𝐾𝑅
 are determined by minimizing:  

 𝜀 = ‖(𝑅̂𝑙)𝑗 − ∑ 𝑤𝑖
𝑅(𝑅̂𝑖

𝐿)𝑗
𝐾𝑅
𝑖=1 ‖

2
, (70) 

subject to the constraint:  

 ∑ 𝑤𝑖
𝑅𝐾𝑅

𝑖=1 = 1. (71) 

Using the method in Section 3.3.2.1, the reconstruction weights 𝑊𝑅 = {𝑤𝑖
𝑅}𝑖=1

𝐾𝑅
 can 

be found. Then these weights are used for the corresponding HR feature (𝑅̂𝑖
𝐻)𝑗 cor-

responding to (𝑅̂𝑖
𝐿)𝑗:  

 (𝑅̂ℎ)𝑗 = ∑ 𝑤𝑖
𝑅(𝑅̂𝑖

𝐻)𝑗
𝐾𝑅
𝑖=1 . (72) 

Finally, the HR residual patches (𝑅ℎ)𝑗 are obtained by transforming the HR features 

into the pixel domain. Using all the residual patches (𝑅ℎ)𝑗, with pixels in the overlap-

ping areas averaged, the HR residual image 𝑅ℎ is obtained. The final HR face image 

is then 

 𝐼ℎ = 𝐺ℎ + 𝑅ℎ. (73) 
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3.3.3  Improvements 

Often times, the resultant image of the CLLR-SR algorithms may involve non-face-

like distortions, such as multiple facial contours, because the images in both training 

set and probe set are not well-aligned. Even though the face images are aligned by the 

position of the eyes, due to the individual differences of the layout of the face priors, 

non-face-distortions may also appear. Of course, this problem may be solved by ad-

vanced face alignment techniques, but here, inspired by the method introduced in Sec-

tion 3.3.2.2, a patch-based method is used to improve the performances. Experiments 

shows that the quality of the super-resolved images is much improved.  

The patch-based method can also be utilized in the first step of the CLLR-SR algorithm 

(global reconstruction). For a novel LR face image, it is divided into overlapped 

patches, and we super-resolve this image patch by patch using the method in Section 

3.3.2.2. After all the LR patches are super-resolved, we combine the resultant HR 

patches by merging the overlapped regions.  

Usually, directly averaging the overlapped area of the patches may result in blocky 

artefacts in the merged image, because the edge of the patches may not be smooth after 

averaging. To deal with this problem, a smoothing mask is designed and applied to 

each patch before merging.  

In detail, the smoothing mask 𝑤𝑖(𝑥, 𝑦) is a weighting map of the same size of an 

image patch 𝑃𝑖(𝑥, 𝑦), where (𝑥, 𝑦) denotes the position of the pixel and 𝑖 represents 

the position information. For each image patch 𝑃𝑖(𝑥, 𝑦), the value of weights in the 

weighting map are designed in the following criterions:  

(1) If (𝑥, 𝑦)𝑖 is not in the overlapped region, 𝑤𝑖(𝑥, 𝑦) = 1.  
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(2) If (𝑥, 𝑦)𝑖 is in the overlapped region, 𝑤𝑖(𝑥, 𝑦) = 𝛼
𝑑+1

, where 𝑑 is Euclidean dis-

tance between (𝑥, 𝑦)𝑖 and the centre of the patch (𝑥𝑐, 𝑦𝑐)𝑖, 𝛼 is the scaling fac-

tor to make sure the summation of all the masking weights of a certain pixel (𝑥, 𝑦) 

is 1.  

(3) For each pixel (𝑥, 𝑦) of the image, ∑ 𝑤𝑖(𝑥, 𝑦)𝑖 = 1.  

After all the weights are calculated, we have the smoothing masks {𝑤𝑖(𝑥, 𝑦)}𝑖=1
𝑁𝑃

 for 

all the corresponding patches {𝑃𝑖(𝑥, 𝑦)}𝑖=1
𝑁𝑃

, where 𝑁𝑃 denotes the number of over-

lapped patches for a face image. Then, the patches are multiplied with the correspond-

ing smoothing masks pixel by pixel, respectively:  

 𝑃𝑖
′(𝑥, 𝑦) = 𝑃𝑖(𝑥, 𝑦)𝑤𝑖(𝑥, 𝑦). (74) 

Finally, the merged image is obtained by combining all the weighted patches by adding 

the values of each weighted pixel:  

 𝐼(𝑥, 𝑦) = ∑ 𝑃𝑖
′(𝑥, 𝑦)𝑖 = ∑ 𝑃𝑖(𝑥, 𝑦)𝑤𝑖(𝑥, 𝑦)𝑖 . (75) 

By multiplying the pixel values in overlapped region with central distance dependent 

weights, the merged image appears to be more smoothing.  

The above improvements may also be applied to SR method based on eigentransfor-

mation and experiments shows the patch-based SR methods are generally robust to 

partially misalignment of face images.  

As shown in Figure 3-3, the patch-based CLLR-SR method can effectively eliminate 

the false-contour distortion caused by the misalignment of the training dataset, while 



37 

 

obtaining a much sharper estimation of the HR face image than the bicubic interpola-

tion method.  

(e)(a) (d)(b) (c)  
Figure 3-3 Comparison of super-resolved face image results. 

(a) Low resolution input test image of size 32 × 32; (b) super-resolved face image of size 128 ×

128 produced by CLLR-SR method; (c) super-resolved face image of size 128 × 128 produced by 

patch-based CLLR-SR method; (d) super-resolved face image of size 128 × 128 produced by bicu-

bic interpolation; (e) grand-true high-resolution face image of size 128 × 128.   
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Chapter 4  Coupled-Projection Method 

Inspired by the CLLR-SR method and the CCA algorithm, a coupled-projection 

method based on CCA is proposed in this chapter. As stated in Section 1.1, LR probe 

images cannot be matched with HR gallery images directly, because the dimensions of 

classic LR and HR features usually do not match. Hence, ideas are brought up to find 

a coupled-projection method which projects both the LR and HR images into a com-

mon subspace. The dimensions of the LR and HR features in the common subspace 

can be matched with each other. Consequently, traditional FR algorithms, such as LDA, 

can be employed in this common subspace.  

4.1  Framework 

CCA

HR Gallery LR Gallery

Down-
sampling

PCA PCA

Matching in Coherent Subspaces

Training Stage

LR Probe

 
Figure 4-1 Framework of the coupled-projection method. 

The framework of the coupled-projection method is illustrated in Figure 4-1. In the 
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training stage, PCA is first used to project the image set to a lower dimensional sub-

space for both the LR and HR image sets.1 Then, CCA is applied to find two sets of 

basis vectors to project the LR and HR PCA features into coherent subspaces, respec-

tively. For a novel LR image, we first calculate its PCA feature, and then project it into 

the coherent subspace using the corresponding basis vectors. Then, the matching is 

undertaken in the coherent subspaces. Since the dimensions of the LR and HR features 

are the same in the coherent subspaces, traditional FR algorithms can be used.  

4.2  Algorithm 

In detail, denote a training set of HR images and the corresponding LR images as:  

 
𝑰𝐻 = {𝐼𝑖𝐻}𝑖=1

𝑚 = [𝐼1𝐻, … , 𝐼𝑚𝐻], 

𝑰𝐿 = {𝐼𝑖𝐿}𝑖=1
𝑚 = [𝐼1𝐿, … , 𝐼𝑚𝐿 ], 

(76) 

and their corresponding PCA coefficients:  

 
𝑿𝐻 = {𝑥𝑖

𝐻}𝑖=1
𝑚 = [𝑥1

𝐻, … , 𝑥𝑚
𝐻], 

𝑿𝐿 = {𝑥𝑖
𝐿}𝑖=1

𝑚 = [𝑥1
𝐿, … , 𝑥𝑚

𝐿 ]. 
(77) 

In the training stage, the LR and HR face images are first projected into the PCA sub-

spaces as follows[3]:  

 
𝑥𝑖

𝐻 = (𝑾𝑃𝐶𝐴
𝐻 )𝑇(𝐼𝑖𝐻 − 𝜇𝐻) 

𝑥𝑖
𝐿 = (𝑾𝑃𝐶𝐴

𝐿 )𝐿(𝐼𝑖𝐿 − 𝜇𝐿) 
(78) 

where 𝜇𝐻  and 𝜇𝐿  are the HR and LR mean faces, respectively, and 𝑾𝑃𝐶𝐴
𝐻  and 

                                                 

1 Except for pixel images, Gabor features may also be considered.  
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𝑾𝑃𝐶𝐴
𝐿  are the PCA projection matrices for the HR and LR training images, respec-

tively.  

Then, using the method in described in Section 3.3.2.1, CCA is applied to capture the 

coherent subspaces relating the two data sets 𝑿𝐻 and 𝑿𝐿, and the corresponding pro-

jected CCA coefficient sets 𝑪𝐻 = {𝑐𝑖
𝐻}𝑖=1

𝑚  and 𝑪𝐿 = {𝑐𝑖
𝐿}𝑖=1

𝑚  are obtained as fol-

lows[11]:  

 
𝑐𝑖
𝐻 = (𝑉𝐻)𝑇(𝑥𝑖

𝐻 − 𝑥̅𝐻), 

𝑐𝑖
𝐿 = (𝑉𝐿)𝑇(𝑥𝑖

𝐿 − 𝑥̅𝐿), 
(79) 

where 𝑉𝐻 and 𝑉𝐿 are the two basis vectors for the HR and LR data sets, respectively, 

and 𝑥̅𝐻 and 𝑥̅𝐿 are the means of the data sets, respectively.  

Next, we input a novel LR image 𝐼𝑙, its PCA coefficient vector 𝑥𝑙 are computed as 

follows:  

 𝑥𝑙 = (𝑾𝑃𝐶𝐴
𝐿 )𝑇(𝐼𝑙 − 𝜇𝐿). (80) 

Then, 𝑥𝑙 is projected into the coherent subspace using:  

 𝑐𝑙 = (𝑉𝐿)𝑇(𝑥𝑙 − 𝑥̅𝐿). (81) 

Finally, 𝑐𝑙  is matched against either 𝑪𝐻 = {𝑐𝑖
𝐻}𝑖=1

𝑚  or 𝑪𝐿 = {𝑐𝑖
𝐿}𝑖=1

𝑚  using tradi-

tional FR algorithms, such as LDA. Usually, the results between the matching against 

𝑪𝐻 or 𝑪𝐿 have little difference, since the correlation between 𝑪𝐻 or 𝑪𝐿 are max-

imized by CCA. In the experiments, a combined PCA and Coherent Linear Discrimi-

nant Analysis algorithm based on Gabor features will be evaluated.  

To be precise, there is no literally a common subspace in the G-PCA+CLDA algorithm. 

However, CCA is used to capture two coherent subspaces, in which the correlation 
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between the HR and the corresponding LR features are maximized, and the dimension 

of the two subspaces are the same. Hence, the LR feature projection can be compared 

with the HR feature projection directly.  

4.3  Advantages 

The advantages of the proposed coupled-projection method over the first two standard 

approaches mentioned in Section 1.1 are stated below.  

The coupled-projection method learns from the HR galleries directly, and also captures 

the structural relationship between the HR and LR images. Hence, useful information 

will not be discarded as it happens in the first standard approach when down-sampling 

the HR gallery images.  

Despite the fact that SR algorithms can be used to obtain the visually appealing HR 

version of the LR probe images, the super-resolved images often lack the high fre-

quency components of true HR images, which is highly required in the recognition 

step of face images. Although some complex SR algorithms, such as CLLR-SR, con-

sider a second step to compensate for the high frequency components, the resultant HR 

images are still not satisfactory. Moreover, the performance of learning-based SR al-

gorithms always depends on the training stage. If a statistical-learning-based SR algo-

rithm is not trained sufficiently, such as ill-posed parameter settings, the performance 

may drop radically. As what the experimental results is going to illustrate, the perfor-

mance of the statistical-learning-based SR algorithm can be unstable when evaluated 

on different databases. To summarize, the SR-FR approach (the second standard ap-

proach stated in Section 1.1) is not a general and efficient solution to the low-resolution 

face-recognition problem.  
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Comparing with the SR-FR approach, the coupled-projection approach does not in-

volve complex training procedures and employs CCA to learn two projection matrices 

for the LR and HR images. Subsequently, the LR and HR images are projected into 

coherent subspaces where matching are performed. The approach considers the simi-

larity between the LR and HR images as the statistical-learning-based SR algorithms 

do and does not suffer the insufficient training problem.  

In addition, in the image-feature representation step, traditional features, such as Gabor 

features, and dimension reduction methods, such as PCA, can be employed; after cou-

pled-projection, the traditional classifiers, such as LDA, can be used for classification. 

Hence, the coupled-projection method is also compatible with other traditional algo-

rithms.  

In the experiments, the PCA+CLDA and G-PCA+CLDA approaches perform well on 

subsets of all databases.   
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Chapter 5  Experiments and Analysis 

5.1  Evaluation Protocol 

5.1.1  Data Sets 

In the experiments, subsets of the CAS-PEAL-R1 database[25], AR face database[26], 

Yale B face database[27], and Caltech face database[28] are used to evaluate the FR and 

SR algorithms. Table 5-1 is an overview of the training and probe subsets of the above 

mentioned databases used in the experiments.  

Table 5-1 Overview of the training and probe subsets 

Database Subsets #Subjects Images Training Samples Probe Samples 
CAS-PEAL-R1 300 2606 1200 1406 
AR 99 1265 693 572 
Yale B 10 650 200 450 
Caltech 26 443 212 231 

CAS-PEAL-R1 Subset: The subset of the CAS-PEAL-R1 database used in the exper-

iments includes variations of expression, accessory, lighting, time, background and 

distance. The training set contains 1200 images of 300 subjects, which are randomly 

selected from the 1040 subjects in the CAS-PEAL-R1 database, with each subject con-

tributing four images randomly selected from the frontal subset of the CAS-PEAL-R1 

database. Sample images are shown in Figure 5-1.  

AR Subset: The subset of the AR face database contains 99 subjects with variations 

including expression, lighting and accessory. For each subject, 13 frontal images or so 

are selected, in which 7 images or so are randomly selected for training and the re-

maining images are used for testing. Sample images are shown in Figure 5-2.  
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Figure 5-1 Samples from the CAS-PEAL-R1 subset. 

 
Figure 5-2 Samples from the AR subset. 
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Figure 5-3 Samples from the Yale B subset. 

 
Figure 5-4 Samples from the Caltech subset. 

Yale B Subset: The subset of the Yale B face database contains 10 subjects. Each 

subject have 65 frontal images of different lighting conditions. For each subject, 20 

images are randomly selected for training and the remaining 45 images are used for 
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testing. Sample images are shown in Figure 5-3.  

Caltech Subset: The subset of the Caltech face database used in the experiments con-

tains 443 frontal images of 26 subjects. For each subject 10 images or so are randomly 

selected for training, and the remaining images are used for testing. Sample images are 

shown in Figure 5-4.  

By comparing the four datasets, the CAS-PEAL-R1 subset and the AR subset contain 

relatively more subjects than the Yale B subset and the Caltech subset. Also, the CAS-

PEAL-R1 and the AR subset include face images with occlusions, while the Yale B 

subset and the Caltech subset don’t. Further we compare the CAS-PEAL-R1 subset 

and the AR subset and find out that the occlusions in the AR subset cover more area 

of the face image than those in the CAS-PEAL-R1 subset do. And by comparing the 

Yale B subset and the Caltech subset, the Yale B subset contains more variations of 

lighting conditions than the Caltech subset does. The major comparisons of the four 

evaluated face datasets are summarized in Table 5-2.  

Table 5-2 Major comparisons of database subsets 

Database Subset #Subjects Occlusions Degree of Illumi-
nation Changes 

CAS-PEAL-R1 Large (300) Glasses, Hats Medium 
AR Large (99) Glasses, Scarf Low 
Yale B Small (10) No High 
Caltech Small (26) No Low/Medium 

 

5.1.2  Image Preprocessing 

In the experiments, the preprocessing process of the face images is divided into two 

steps: geometric normalization and illumination normalization[25]. Geometric normal-

ization is to provide features that are invariant to geometric transformations of the face 

images, such as the location, the rotation, and the scale of the face in the image, and to 
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remove irrelevant information about the face images, such as the background and the 

hair of a subject. Illumination normalization is to decrease the variations of a face im-

age induced by lighting changes while keeping distinguishing features. The details of 

the two steps are described below.  

In the geometric normalization step, each face image is scaled and rotated so that the 

eyes are positioned in a horizontal line, and the distance between them equals a prede-

fined length. Then, the face image is cropped to include only the face region with little 

hair and background. The size of a cropped face image is 64 × 64. Typically, the hair-

style of a specific subject and the background are constant in a face database; thus, 

better performance can be obtained with larger face regions.  

In the illumination normalization step, the histogram equalization (HE) method is used. 

The diagram of the face image processing procedures is shown in Figure 5-5.  

Aligned and 
Cropped Image 
of Size 64 x 64 

Original Image

Geometric
Normalization

Illumination
Normalization,
Down-sampling

Histogram
Equalized 

Images
 

Figure 5-5 Diagram of face image preprocessing procedures. 

5.2  Experimental Results 

5.2.1  Evaluation of FR Algorithms on LR Face Images 

5.2.1.1  Parameter Settings 

In this section, experiments are undertaken to test the performances of tradition face-
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recognition algorithms on low-resolution face images directly. As is described in Sec-

tion 1.1, for the first standard approach, we use the LR probes to match the down-

sampled gallery images. In the experiments, images with resolutions of 4 × 4, 5 ×

5, …, 64 × 64 are obtained, and the evaluated baseline FR algorithms are PCA, 

PCA+LDA, G-PCA+LDA and LGBPHS.  

For the PCA projection step in the PCA methods, the eigenvectors corresponding to 

the largest eigenvalues are first selected such that 99% of the total energy are retained. 

However, in choosing the projection which maximizes the total scatter, PCA retains 

unwanted variations due to lighting, occlusions and other facial variations[5]. The var-

iation between the images of the same face due to illumination and occlusions are 

almost always larger than image variations due to change in face identity[29]. Conse-

quently, the points in the projected space will not be well clustered, and worse, the 

classes may be smeared together. It has been suggested that by discarding a certain 

number of the most significant principal components, the variation due to lighting and 

occlusions is reduced. This number of the most significant principal components varies 

with different database subsets and different resolution of face images. Hence, in the 

experiments, we test the PCA method by further discarding different number of the 

most significant principal components for each resolution of each database subset, and 

the best results are presented. Both the number of principal components used for clas-

sification and the number of discarded principal components are given in the appendix. 

For the PCA projection step in the PCA+LDA and G-PCA+LDA methods, the eigen-

vectors corresponding to the largest eigenvalues are selected such that 99% of the total 

energy are retained. The number of principal components used for classification are 

given in the appendix.  

To avoid unnecessary computation in the G-PCA+LDA method, for images with res-

olution greater than 16 × 16, the each GMP are down-sampled to 16 × 16, since 
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higher resolution of GMP makes no contribution to improve the identification perfor-

mance according to earlier experiments.  

For the LGBPHS method, each LGBP map are divided into non-overlap regions with 

the size of 4 × 4 in the experiments.  

5.2.1.2  Results and Discussion 

 
Figure 5-6 Identification performance of the four baseline FR algorithms on LR face images tested on 

the CAS-PEAL-R1 subset. 

As shown in Figure 5-6, the identification performance of the four baseline FR algo-

rithms drops when the resolution of face images drops, and LGBPHS, as a non-statis-

tical-learning-based method, is more sensitive to resolution reduction. We can also ob-

serve the trend that PCA+LDA outperforms PCA, G-PCA+LDA outperforms 

PCA+LDA, while the performance of G-PCA+LDA is first to drop with the decreasing 

of the image size, then comes with PCA+LDA and PCA. Gabor feature may be helpful 

to improve the identification performance at high-resolution level, but it becomes more 

sensitive to the decreasing of the image resolution. The performance of LGBPHS is 

between those of PCA+LDA and G-PCA+LDA when image resolution is higher than 
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30 × 30. When face image size is smaller than 16 × 16, the identification perfor-

mances of all the baseline algorithms begin to drop radically.  

 
Figure 5-7 Identification performance of the four baseline FR algorithms on LR face images tested on 

the AR subset. 

Figure 5-7 illustrates the identification performances of the baseline FR algorithms on 

LR face images tested on the AR subset and it shows the same trends as Figure 5-6 

does. By comparing the results in Figure 5-6 and Figure 5-7 closely, we can find out 

that the PCA+LDA, G-PCA+LDA and LGBPHS methods produces lower identifica-

tion rates when tested on the AR subset, while PCA produces higher identification 

rates. As we have discussed in Section 5.1.1, the AR subset contains occlusions (sun-

glasses, scarf) that might covers nearly half the region of the face image, which would 

seriously affect the performances of the baseline FR algorithms. We have mentioned 

in Section 5.2.1.1 that for PCA, by discarding a certain number of the most significant 

principal components, the variation due to lighting and occlusions can be reduced. 

Applying this trick, the performance of PCA can be improved. However, since LDA 

already considers maximizing the between-class scatter while minimizing the within-

class scatter, the above mentioned trick is no longer necessarily applicable to the 
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PCA+LDA and G-PCA+LDA methods. Our experiments also show that the identifi-

cation performances of the PCA+LDA and G-PCA+LDA methods will drop when the 

trick that discards a certain number of principal components is applied in the PCA step. 

For LGBPHS, it neither includes PCA processing nor considers the between- and 

within-class scatter as the LDA-based methods do, so LGBPHS produces lower iden-

tification rates when tested on the AR subset.  

Figure 5-8 and figure 5-9 illustrate the identification performances of the four baseline 

FR algorithms on LR face images tested on the Yale B subset and the Caltech subset. 

According to the results, we can observe the trends that the identification rates drop 

when the image size decreases. However, the results are much better than those in 

Figure 5-6 and Figure 5-7. This is mainly because the number of subjects in these two 

database subsets are small, so it is easier for the evaluated FR algorithms to produce 

better classification results.  

 
Figure 5-8 Identification performance of the four baseline FR algorithms on LR face images tested on 

the Yale B subset. 
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Figure 5-9 Identification performance of the four baseline FR algorithms on LR face images tested on 

the Caltech subset. 

To better illustrate the algorithm performance on low-resolution face images, we con-

sider continue to use the CAS-PEAL-R1 subset and the AR subset for evaluation in 

subsequent experiments.  

5.2.2  Evaluation of SR Algorithms 

5.2.2.1  Parameter Settings 

In this section, we evaluate the performance of the baseline super-resolution algo-

rithms on the CAS-PEAL-R1 subset and the AR subset. The three baseline SR algo-

rithms are bicubic interpolation, eigentransformation and CLLR-SR. According to the 

experimental results in Section 5.2.1.2, we obtain face images with resolution of 16 ×

16, 12 × 12, and 8 × 8, which are considered as low-resolutions. All the LR face 

images are first super-resolved to 48 × 48, which is considered as high-resolution, by 

the three baseline SR algorithms, respectively. Then, we evaluate the performances the 

SR algorithms by two measurements: Peak signal-to-noise ratio (PSNR)[30] and struc-

tural similarity (SSIM)[31].  
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For images super-resolved by the eigentransformation and the CLLR-SR methods, the 

patch-based can improve the performance and smoothing masks are used to merge the 

overlapped patches. In detail, LR images are divided into patches of size 4 × 4 with 

50% overlap.  

For the PCA used in the eigentransformation and the CLLR-SR methods, the number 

of the eigenvectors is selected such that 99% of the total energy is retained.  

For a fair comparison, in eigentransformation, the positive scale parameter, 𝑎, is set 

to be 1, i.e. 

𝑎 = 1. 

In the CLLR-SR method, the neighbourhood sizes in the global reconstruction step 

and the residual compensation step are 80 and 100, respectively, i.e.  

𝐾𝐺 = 80, 𝐾𝑅 = 100. 

5.2.2.2  Results and Discussion 

Table 5-3 Mean PSNR and SSIM of super-resolved images (CAS-PEAL-R1) 

Probe Image Size 16 × 16 12 × 12 8 × 8 
SR Algorithms PSNR SSIM PSNR SSIM PSNR SSIM 
Bicubic 19.6786 0.7941 17.1842 0.6626 14.5991 0.4647 
Eigentransformation 16.8320 0.6839 15.6176 0.6011 14.3213 0.5048 
CLLR-SR 16.1310 0.6809 15.3689 0.5534 11.0385 0.2832 

Table 5-4 Mean PSNR and SSIM of super-resolved images (AR) 

Probe Image Size 16 × 16 12 × 12 8 × 8 
SR Algorithms PSNR SSIM PSNR SSIM PSNR SSIM 
Bicubic 19.6604 0.7381 17.5626 0.6203 15.3925 0.4656 
Eigentransformation 17.2987 0.6212 16.0508 0.5347 14.8050 0.4435 
CLLR-SR 17.4831 0.6263 15.4254 0.4789 10.9210 0.2316 

Table 5-4, Table 5-5 show the results of the PSNR and SSIM measurements between 
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the original HR images and the images super-resolved from different sizes by different 

SR algorithms. Note that only mean values of the PSNR and SSIM measurement re-

sults on each subset are presented in the tables above.  

(a)

(b)

(c)  
Figure 5-10 Super-resolution results based on the CAS-PEAL-R1 subset using different methods. 

(a) Bicubic interpolation; (b) eigentransformation; (c) CLLR-SR.  
The 1st column shows the original HR images, while the 2nd, 3rd, and 4th columns show the SR results 

from LR images of sizes 16 × 16, 12 × 12, and 8 × 8, respectively. 

(a)

(b)

(c)  
Figure 5-11 Super-resolution results based on the AR subset using different methods. 

(a) Bicubic interpolation; (b) eigentransformation; (c) CLLR-SR.  
The 1st column shows the original HR images, while the 2nd, 3rd, and 4th columns show the SR results 

from LR images of sizes 16 × 16, 12 × 12, and 8 × 8, respectively. 

Figure 5-10 and Figure 5-11 show the sample super-resolution results based on the 

CAS-PEAL-R1 subset and the AR subset, respectively.  
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Referring to Table 5-3 and Table 5-4, bicubic interpolation produces the results with 

the best PSNR and SSIM performances. Referring to Figure 5-10 and Figure 5-11, we 

can observe that face images produced by eigentransformation and CLLR are sharper 

than those produced by bicubic interpolation, but with more non-face-like distortions. 

However, when the face image is small, neither bicubic interpolation nor the statistical-

learning-based SR methods can produce a satisfactory estimation of the HR face image.  

The reasons can be summarized in two aspects. (1) Bicubic interpolation is a non-

statistical-learning-based SR method, which takes information only from the LR probe 

image itself to produce an HR estimation. Therefore, when the image size is too small 

to offer enough information for estimating the HR face image, bicubic interpolation 

failed to give a clear and sharp HR estimation. (2) Eigentransformation and CLLR-SR 

are two statistical-learning-based SR methods, both of which can learn information 

from HR training images to render an HR estimation of the LR probe image. Usually, 

in order to obtain satisfactory results, sufficient training of the SR algorithms is indis-

pensable to acquire proper parameter settings. There is no way find general parameter 

settings for different probe images and different training sets, and finding proper pa-

rameter settings always need a lot of attempts, especially for complex SR algorithms, 

such as CLLR-SR.  

5.2.3  Evaluation of FR Algorithms on SR Face Images 

5.2.3.1  Parameter Settings 

In this section, we evaluate the performances face super-resolution methods on face 

recognition. We test the four baseline FR algorithms using the super-resolved face im-

ages from Section 5.2.2.2, and compare the results with those obtained in Section 

5.2.1.2.  

For the PCA projection step in the PCA methods, the eigenvectors corresponding to 



56 

 

the largest eigenvalues are first selected such that 99% of the total energy are retained. 

In the experiments, we test the PCA method by further discarding different number of 

the most significant principal components for each resolution of each database subset, 

and the best results are presented. Both the number of principal components used for 

classification and the number of discarded principal components are given in the ap-

pendix. 

For the PCA projection step in the PCA+LDA and G-PCA+LDA methods, the eigen-

vectors corresponding to the largest eigenvalues are selected such that 99% of the total 

energy are retained. The number of principal components used for classification are 

given in the appendix. 

To avoid unnecessary computation in the G-PCA+LDA method, for images with res-

olution greater than 16 × 16, the each GMP are down-sampled to 16 × 16, since 

higher resolution of GMP makes no contribution to improve the identification perfor-

mance according to earlier experiments.  

For the LGBPHS method, each LGBP map are divided into non-overlap regions with 

the size of 4 × 4 in the experiments.  

5.2.3.2  Results and Discussion 

Figure 5-12, Figure 5-13, Figure 5-14 and Figure 5-15 illustrate the identification per-

formances of the four baseline algorithms with the super-resolved face images tested 

on the CAS-PEAL-R1 subset. We have already evaluated the SR algorithms and ob-

served the SR results in Section 5.2.2.2, which are not satisfactory. Hence, as shown 

in the figures, the identification performances are not improved by applying super-

resolution to the LR probe images. What’s more, for G-PCA+LDA, the identification 

rates drop to nearly zero.  
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Figure 5-12 Identification performance of PCA on the three baseline SR algorithms tested on the 

CAS-PEAL-R1 subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 

 

Figure 5-13 Identification performance of PCA+LDA on the three baseline SR algorithms tested on 

the CAS-PEAL-R1 subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 
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Figure 5-14 Identification performance of G-PCA+LDA on the three baseline SR algorithms tested on 

the CAS-PEAL-R1 subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 

 

Figure 5-15 Identification performance of LGBPHS on the three baseline SR algorithms tested on the 

CAS-PEAL-R1 subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 
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Figure 5-16 Identification performance of PCA on the three baseline SR algorithms tested on the AR 

subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 

 

Figure 5-17 Identification performance of PCA+LDA on the three baseline SR algorithms tested on 

the AR subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 
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Figure 5-18 Identification performance of G-PCA+LDA on the three baseline SR algorithms tested on 

the AR subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 

 

Figure 5-19 Identification performance of LGBPHS on the three baseline SR algorithms tested on the 

AR subset. 

BC: bicubic interpolation; ET: eigentransformation; CLLR: CLLR-SR. 
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Figure 5-16, Figure 5-17, Figure 5-18 and Figure 5-19 illustrate the identification per-

formances of the four baseline algorithms with the super-resolved face images tested 

on the AR subset. Again, the results show that in this experiment, super-resolving the 

LR probe images is not helpful to improve the performance of the face recognition 

algorithms on LR face images. Referring to Figure 5-19, there is an exception that 

LGBPHS produces better results with the probe face images super-resolved by bicubic 

interpolation and eigentransformation, when the resolution is 16 × 16. It is because 

that the super-resolved face image size is much larger than the size of original LR face 

images, thus resulting more regions and more LGBP map histograms for the matching 

step, which might be helpful to improve the performance of the LGBPHS algorithm.  

In general, the bad identification performances illustrated in this section are due to 

unsatisfactory super-resolution results. We believe that if the SR algorithms can give 

a satisfactory estimation of the HR images, the identification performances can be im-

proved. However, the SR algorithms are not suitable for face recognition, because the 

non-statistical-learning-based methods will fail to give a sharp HR estimation and the 

statistical-learning-based methods always involve complicated training procedures to 

obtain a low-distortion HR estimation, which is not recommended in practical appli-

cations.  

5.2.4  Evaluation of Coupled-Projection Methods 

5.2.4.1  Parameter Settings 

In this section, we are going to evaluate the identification performance of two coupled-

projection methods, PCA+CLDA and G-PCA+CLDA. The two methods are tested on 

the CAS-PEAL-R1 subset and the AR subset, and the results will be compared with 

those of PCA+LDA and G-PCA+LDA, respectively. In the experiments, we consider 

48 × 48 as the high-resolution and 4 × 4, 5 × 5, …, 32 × 32 as the low-resolu-

tions.  
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For the PCA projection step in the PCA+CLDA and G-PCA+CLDA methods, the ei-

genvectors corresponding to the largest eigenvalues are selected such that 99% of the 

total energy are retained. The number of principal components used for classification 

are given in the appendix. 

To avoid unnecessary computation in the G-PCA+CLDA method, for images with res-

olution greater than 16 × 16, the each GMP are down-sampled to 16 × 16, since 

higher resolution of GMP makes no contribution to improve the identification perfor-

mance according to earlier experiments.  

5.2.4.2  Results and Discussion 

 
Figure 5-20 Identification performance of PCA+CLDA vs. PCA+LDA and G-PCA+CLDA vs. G-

PCA+LDA tested on the CAS-PEAL-R1 subset. 

Figure 5-20 and Figure 5-21 illustrate the identification performances of PCA+CLDA 

vs. PCA+LDA and G-PCA+CLDA vs. G-PCA+LDA experimented on the CAS-

PEAL-R1 subset and the AR subset, respectively. The results show that the coupled-

projection methods produce higher identification rates than the traditional FR methods 

do. CCA can be used to enhance the performance of the traditional FR algorithms, 
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such as PCA+LDA and G-PCA+LDA, on LR face images. By applying CCA, the cou-

pled-projection methods maximize the correlation between the HR and LR face images, 

thus improving the classification performance of the traditional FR algorithms. In a 

addition, in comparison with the CLLR-SR based FR approaches, the coupled –pro-

jection methods are less complex and include fewer computations. For example, the 

CLLR-SR algorithm has to back-project to image feature in the coherent subspace to 

the PCA space and then reconstruct the final face image, while the coupled-projection 

methods do not involve those back-projections.  

 
Figure 5-21 Identification performance of PCA+CLDA vs. PCA+LDA and G-PCA+CLDA vs. G-

PCA+LDA tested on the AR subset.  
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Chapter 6  Conclusion 

In this project, we focus on face recognition on low-resolution image. First, the prob-

lem of low-resolution face recognition is discussed and three standard approaches to 

recognizing a low-resolution face image are illustrated. Then, four baseline face recog-

nition algorithms and three baseline super-resolution algorithms are introduced. After 

that, a coupled-projection method inspired by and based on the CCA algorithm is pro-

posed.  

The performances of the FR and SR algorithms are evaluated for face images at dif-

ferent resolution levels. The results shows that identification rate degrades as the face 

image resolution drops. However, the degree of the performance drop on different ap-

proaches changes sharply. In details, face recognition based on facial features, such as 

Gabor feature and LBP, appear more robust to the decreasing of the image size. Super-

resolution of the LR probe images is considered as an approach to improve the perfor-

mance of the evaluated FR algorithms, but the results are not ideal, and even worse. 

Since super-resolution may improve the quality of the image visually, it may not be 

useful enough to increase the identification rate. More efficiently, the coupled-projec-

tion method, which neither down-samples the gallery images nor super-resolves the 

LR probe images to a higher scale, project the LR and HR images into a common 

subspace, and then perform matching LR and HR representations in the subspace of 

the same dimension. Hence, traditional classifier, like LDA, can be used. Results 

demonstrate that the coupled-projection method combined with FR algorithms based 

on facial features, such as G-PCA+CLDA, outperforms other approaches on recogni-

tion of LR images.   
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Appendix I 

Identification rates of the four baseline FR algorithms on LR face images tested on the CAS-PEAL-
R1 subset (corresponding to Figure 5-6) 

Image Size PCA PCA+LDA G-PCA+LDA LGBPHS 
64 × 64 0.63016 0.79943 0.96728 0.89972 
63 × 63 0.62945 0.80583 0.97013 0.899 
62 × 62 0.63229 0.80654 0.97084 0.899 
61 × 61 0.63158 0.80014 0.96871 0.90043 
60 × 60 0.62945 0.8037 0.97084 0.89687 
59 × 59 0.63016 0.81223 0.96871 0.89545 
58 × 58 0.62873 0.8037 0.96515 0.89403 
57 × 57 0.63016 0.80085 0.96728 0.90327 
56 × 56 0.63016 0.80156 0.96657 0.89474 
55 × 55 0.63087 0.81152 0.96515 0.89047 
54 × 54 0.62945 0.80228 0.96302 0.89189 
53 × 53 0.63087 0.8037 0.96728 0.89545 
52 × 52 0.63229 0.80654 0.96799 0.89545 
51 × 51 0.63016 0.80654 0.96088 0.89047 
50 × 50 0.63016 0.80085 0.96444 0.89474 
49 × 49 0.62873 0.79801 0.96159 0.8926 
48 × 48 0.62945 0.80583 0.96586 0.88976 
47 × 47 0.63158 0.80583 0.96586 0.88762 
46 × 46 0.63158 0.80939 0.96728 0.88478 
45 × 45 0.63016 0.81294 0.96017 0.88336 
44 × 44 0.62945 0.80228 0.96159 0.8798 
43 × 43 0.63158 0.8037 0.95661 0.87482 
42 × 42 0.63158 0.80868 0.96302 0.87838 
41 × 41 0.62945 0.80085 0.96088 0.87696 
40 × 40 0.63016 0.7973 0.95875 0.86984 
39 × 39 0.63087 0.80725 0.95733 0.87198 
38 × 38 0.62802 0.80085 0.95733 0.86913 
37 × 37 0.62873 0.80654 0.96017 0.8606 
36 × 36 0.63229 0.80299 0.95946 0.85491 
35 × 35 0.62945 0.80299 0.95306 0.86273 
34 × 34 0.62447 0.80583 0.95448 0.84993 
33 × 33 0.63016 0.80228 0.95092 0.85349 
32 × 32 0.63016 0.80583 0.95661 0.85064 
31 × 31 0.6266 0.80085 0.95377 0.83784 
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30 × 30 0.62589 0.80228 0.95235 0.83001 
29 × 29 0.62802 0.79943 0.94452 0.81366 
28 × 28 0.6266 0.79018 0.93599 0.81081 
27 × 27 0.62376 0.79587 0.92817 0.80654 
26 × 26 0.6266 0.79232 0.93243 0.80014 
25 × 25 0.63087 0.78236 0.92745 0.78592 
24 × 24 0.61949 0.78947 0.91323 0.77667 
23 × 23 0.61522 0.78805 0.9175 0.77525 
22 × 22 0.61166 0.7724 0.90398 0.76102 
21 × 21 0.60882 0.78521 0.88905 0.73969 
20 × 20 0.61238 0.76885 0.88336 0.71835 
19 × 19 0.61451 0.77525 0.88478 0.70697 
18 × 18 0.6074 0.75178 0.86344 0.6899 
17 × 17 0.60811 0.74253 0.84637 0.68065 
16 × 16 0.60597 0.75462 0.8357 0.64794 
15 × 15 0.59388 0.74538 0.81223 0.61522 
14 × 14 0.59317 0.72404 0.77738 0.59459 
13 × 13 0.58606 0.72119 0.76671 0.59246 
12 × 12 0.57397 0.68279 0.71906 0.54125 
11 × 11 0.56543 0.67923 0.69203 0.46942 
10 × 10 0.55974 0.62162 0.63087 0.41252 
9 × 9 0.51991 0.59033 0.60669 0.3606 
8 × 8 0.49644 0.55121 0.51565 0.29587 
7 × 7 0.46302 0.4623 0.45519 0.16927 
6 × 6 0.43457 0.39118 0.31792 0.087482 
5 × 5 0.33713 0.30156 0.21764 0.073969 
4 × 4 0.2724 0.19488 0.10455 0.041252 

Identification rates of the four baseline FR algorithms on LR face images tested on the AR subset 
(corresponding to Figure 5-7) 

Image Size PCA PCA+LDA G-PCA+LDA LGBPHS 
64 × 64 0.662587 0.79021 0.93182 0.83566 
63 × 63 0.66958 0.79021 0.93357 0.83566 
62 × 62 0.666084 0.78846 0.93531 0.83392 
61 × 61 0.673077 0.79545 0.93007 0.83042 
60 × 60 0.674825 0.79196 0.93007 0.83741 
59 × 59 0.671329 0.78147 0.93531 0.83392 
58 × 58 0.66958 0.79545 0.93007 0.83217 
57 × 57 0.674825 0.78846 0.93007 0.82867 
56 × 56 0.667832 0.7972 0.93706 0.83566 
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55 × 55 0.671329 0.78671 0.93182 0.83042 
54 × 54 0.667832 0.8042 0.92832 0.83217 
53 × 53 0.673077 0.78322 0.93007 0.82867 
52 × 52 0.671329 0.79895 0.92657 0.82517 
51 × 51 0.66958 0.7972 0.93007 0.83042 
50 × 50 0.66958 0.79196 0.93182 0.82517 
49 × 49 0.676573 0.78671 0.93357 0.82517 
48 × 48 0.673077 0.78671 0.92832 0.82692 
47 × 47 0.66958 0.78147 0.93182 0.82692 
46 × 46 0.674825 0.78322 0.93531 0.82168 
45 × 45 0.671329 0.79196 0.93706 0.81818 
44 × 44 0.678322 0.78497 0.92657 0.81993 
43 × 43 0.674825 0.78846 0.93007 0.8042 
42 × 42 0.68007 0.78322 0.93706 0.81119 
41 × 41 0.667832 0.78497 0.93182 0.81294 
40 × 40 0.678322 0.77797 0.92657 0.80245 
39 × 39 0.673077 0.78671 0.92657 0.80944 
38 × 38 0.671329 0.78671 0.92832 0.79371 
37 × 37 0.676573 0.79021 0.93007 0.79895 
36 × 36 0.671329 0.79196 0.93182 0.80944 
35 × 35 0.678322 0.78671 0.92133 0.77797 
34 × 34 0.671329 0.77972 0.92832 0.79021 
33 × 33 0.678322 0.78147 0.92483 0.78322 
32 × 32 0.676573 0.7972 0.91434 0.78846 
31 × 31 0.673077 0.77273 0.91783 0.75524 
30 × 30 0.664336 0.76224 0.91084 0.75874 
29 × 29 0.673077 0.76573 0.8951 0.72902 
28 × 28 0.678322 0.77273 0.90385 0.72902 
27 × 27 0.671329 0.79371 0.88636 0.6993 
26 × 26 0.657343 0.76923 0.88986 0.68357 
25 × 25 0.667832 0.77448 0.88986 0.66434 
24 × 24 0.653846 0.76224 0.88636 0.68007 
23 × 23 0.652098 0.76923 0.87587 0.65734 
22 × 22 0.662587 0.76573 0.84441 0.62413 
21 × 21 0.65035 0.74126 0.84441 0.5979 
20 × 20 0.646853 0.75 0.84266 0.56294 
19 × 19 0.632867 0.71503 0.8479 0.51224 
18 × 18 0.638112 0.72727 0.81294 0.48776 
17 × 17 0.632867 0.71678 0.8007 0.47727 
16 × 16 0.641608 0.73077 0.79196 0.47028 
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15 × 15 0.617133 0.7028 0.75699 0.42308 
14 × 14 0.618881 0.69755 0.75 0.35315 
13 × 13 0.601399 0.67657 0.71329 0.32168 
12 × 12 0.604895 0.66259 0.70629 0.27622 
11 × 11 0.543706 0.60664 0.64161 0.23077 
10 × 10 0.559441 0.61713 0.58741 0.20629 
9 × 9 0.524476 0.54895 0.54371 0.11888 
8 × 8 0.475524 0.50699 0.52448 0.13811 
7 × 7 0.423077 0.48077 0.36888 0.064685 
6 × 6 0.40035 0.38462 0.28846 0.04021 
5 × 5 0.274476 0.26049 0.13112 0.043706 
4 × 4 0.223776 0.19231 0.062937 0.036713 

Identification rates of the four baseline FR algorithms on LR face images tested on the Yale B subset 
(corresponding to Figure 5-8) 

Image Size PCA PCA+LDA G-PCA+LDA LGBPHS 
64 × 64 0.977778 0.997778 0.997778 0.98889 
63 × 63 0.975556 0.997778 0.997778 0.98889 
62 × 62 0.975556 0.997778 0.997778 0.99333 
61 × 61 0.975556 0.997778 0.997778 0.98889 
60 × 60 0.975556 0.997778 0.997778 0.98889 
59 × 59 0.975556 0.997778 0.997778 0.98889 
58 × 58 0.977778 0.997778 0.997778 0.98889 
57 × 57 0.975556 0.997778 0.995556 0.98889 
56 × 56 0.975556 0.997778 0.997778 0.98889 
55 × 55 0.975556 0.997778 0.997778 0.98889 
54 × 54 0.975556 0.997778 0.995556 0.98667 
53 × 53 0.977778 0.997778 0.997778 0.98667 
52 × 52 0.977778 0.997778 0.997778 0.98667 
51 × 51 0.977778 0.997778 0.997778 0.98889 
50 × 50 0.977778 0.997778 0.997778 0.98889 
49 × 49 0.975556 0.997778 0.995556 0.98667 
48 × 48 0.975556 0.997778 0.995556 0.98667 
47 × 47 0.977778 0.997778 0.995556 0.98667 
46 × 46 0.977778 0.997778 0.997778 0.98667 
45 × 45 0.975556 0.997778 0.995556 0.98667 
44 × 44 0.975556 0.997778 0.997778 0.98444 
43 × 43 0.975556 0.997778 0.995556 0.98667 
42 × 42 0.977778 0.997778 0.997778 0.98444 
41 × 41 0.977778 0.997778 0.995556 0.98 
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40 × 40 0.977778 0.997778 0.997778 0.98 
39 × 39 0.977778 0.997778 0.995556 0.98 
38 × 38 0.975556 0.997778 0.997778 0.98 
37 × 37 0.973333 0.997778 0.997778 0.97778 
36 × 36 0.975556 0.997778 0.991111 0.97556 
35 × 35 0.975556 0.997778 0.995556 0.96889 
34 × 34 0.977778 0.997778 0.995556 0.97556 
33 × 33 0.973333 0.997778 0.997778 0.97556 
32 × 32 0.973333 0.997778 0.997778 0.97778 
31 × 31 0.975556 0.997778 0.993333 0.96889 
30 × 30 0.973333 0.997778 0.988889 0.96889 
29 × 29 0.975556 0.997778 0.997778 0.96667 
28 × 28 0.975556 0.997778 0.995556 0.96 
27 × 27 0.973333 0.997778 0.997778 0.96444 
26 × 26 0.975556 1 0.993333 0.95778 
25 × 25 0.977778 0.997778 0.995556 0.95111 
24 × 24 0.973333 0.995556 0.993333 0.95111 
23 × 23 0.975556 0.997778 0.997778 0.96222 
22 × 22 0.975556 1 0.995556 0.95111 
21 × 21 0.975556 0.995556 0.991111 0.94 
20 × 20 0.982222 0.997778 0.997778 0.93555 
19 × 19 0.966667 0.997778 0.997778 0.92889 
18 × 18 0.973333 0.997778 0.993333 0.91778 
17 × 17 0.975556 0.995556 0.997778 0.92444 
16 × 16 0.973333 0.995556 0.995556 0.90889 
15 × 15 0.964444 0.995556 0.993333 0.88 
14 × 14 0.96 0.997778 0.997778 0.87111 
13 × 13 0.955556 0.991111 1 0.86889 
12 × 12 0.953333 0.971111 0.98 0.87333 
11 × 11 0.946667 0.964444 0.964444 0.83778 
10 × 10 0.948889 0.98 0.984444 0.79333 
9 × 9 0.953333 0.975556 0.98 0.76 
8 × 8 0.917778 0.937778 0.933333 0.72444 
7 × 7 0.88 0.837778 0.848889 0.56889 
6 × 6 0.882222 0.84 0.777778 0.44222 
5 × 5 0.868889 0.813333 0.682222 0.45778 
4 × 4 0.657778 0.628889 0.406667 0.29111 
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Identification rates of the four baseline FR algorithms on LR face images tested on the Caltech subset 
(corresponding to Figure 5-9) 

Image Size PCA PCA+LDA G-PCA+LDA LGBPHS 
64 × 64 0.948052 0.982684 0.991342 0.99567 
63 × 63 0.948052 0.982684 0.991342 1 
62 × 62 0.948052 0.982684 0.991342 1 
61 × 61 0.952381 0.982684 0.991342 1 
60 × 60 0.948052 0.982684 0.991342 1 
59 × 59 0.952381 0.982684 0.991342 0.99567 
58 × 58 0.948052 0.982684 0.991342 1 
57 × 57 0.948052 0.982684 0.991342 0.99567 
56 × 56 0.948052 0.982684 0.991342 1 
55 × 55 0.952381 0.982684 0.991342 0.99567 
54 × 54 0.948052 0.982684 0.991342 1 
53 × 53 0.948052 0.982684 0.991342 1 
52 × 52 0.948052 0.982684 0.995671 1 
51 × 51 0.952381 0.982684 0.991342 0.99567 
50 × 50 0.952381 0.982684 0.991342 1 
49 × 49 0.948052 0.982684 0.991342 0.99567 
48 × 48 0.943723 0.982684 0.991342 1 
47 × 47 0.952381 0.982684 0.991342 0.99567 
46 × 46 0.952381 0.982684 0.991342 0.99567 
45 × 45 0.948052 0.982684 0.991342 0.99567 
44 × 44 0.948052 0.982684 0.991342 0.99567 
43 × 43 0.952381 0.982684 0.991342 0.99567 
42 × 42 0.952381 0.982684 0.991342 0.99567 
41 × 41 0.948052 0.982684 0.991342 0.99567 
40 × 40 0.948052 0.982684 0.991342 0.99567 
39 × 39 0.952381 0.982684 0.987013 0.99567 
38 × 38 0.948052 0.982684 0.991342 0.99134 
37 × 37 0.948052 0.978355 0.991342 0.99567 
36 × 36 0.948052 0.982684 0.991342 1 
35 × 35 0.948052 0.982684 0.991342 0.99567 
34 × 34 0.95671 0.982684 0.991342 0.98701 
33 × 33 0.943723 0.987013 0.991342 0.99567 
32 × 32 0.95671 0.982684 0.991342 0.99134 
31 × 31 0.952381 0.982684 0.982684 0.98701 
30 × 30 0.948052 0.978355 0.991342 0.99567 
29 × 29 0.948052 0.982684 0.987013 0.99134 
28 × 28 0.943723 0.987013 0.987013 0.99567 
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27 × 27 0.948052 0.982684 0.991342 0.98268 
26 × 26 0.952381 0.991342 0.987013 0.98268 
25 × 25 0.943723 0.987013 0.991342 0.98268 
24 × 24 0.948052 0.982684 0.991342 0.97403 
23 × 23 0.952381 0.987013 0.987013 0.98268 
22 × 22 0.926407 0.978355 0.991342 0.98268 
21 × 21 0.935065 0.995671 0.991342 0.9697 
20 × 20 0.948052 0.987013 0.982684 0.97835 
19 × 19 0.948052 0.987013 0.987013 0.97043 
18 × 18 0.935065 0.987013 0.982684 0.96571 
17 × 17 0.939394 0.974026 0.965368 0.93939 
16 × 16 0.95671 0.982684 0.987013 0.94805 
15 × 15 0.943723 0.978355 0.974026 0.90043 
14 × 14 0.926407 0.969697 0.974026 0.92641 
13 × 13 0.922078 0.982684 0.987013 0.90476 
12 × 12 0.91342 0.982684 0.991342 0.8961 
11 × 11 0.922078 0.965368 0.95671 0.85714 
10 × 10 0.896104 0.961039 0.95671 0.85281 
9 × 9 0.883117 0.961039 0.969697 0.77922 
8 × 8 0.878788 0.952381 0.948052 0.72294 
7 × 7 0.896104 0.930736 0.926407 0.63203 
6 × 6 0.874459 0.887446 0.874459 0.40693 
5 × 5 0.813853 0.82684 0.770563 0.42424 
4 × 4 0.792208 0.831169 0.65368 0.2381 

Identification rates of PCA on the three baseline SR algorithms tested on the CAS-PEAL-R1 subset 
(corresponding to Figure 5-12) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.606 0.5953 0.5235 0.5427 
12 × 12 0.574 0.5213 0.4502 0.4459 
8 × 8 0.4964 0.325 0.2688 0.0057 

Identification rates of PCA+LDA on the three baseline SR algorithms tested on the CAS-PEAL-R1 
subset (corresponding to Figure 5-13) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.75462 0.57397 0.39474 0.25889 
12 × 12 0.68279 0.2909 0.1707 0.11664 
8 × 8 0.55121 0.099573 0.064011 0.004267 
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Identification rates of G-PCA+LDA on the three baseline SR algorithms tested on the CAS-PEAL-R1 
subset (corresponding to Figure 5-14) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.8357 0.23969 0.3357 0.11451 
12 × 12 0.71906 0.050498 0.092461 0.044097 
8 × 8 0.51565 0.014936 0.034139 0.016358 

Identification rates of LGBPHS on the three baseline SR algorithms tested on the CAS-PEAL-R1 sub-
set (corresponding to Figure 5-15) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.64794 0.62162 0.47866 0.19701 
12 × 12 0.54125 0.20982 0.12304 0.059744 
8 × 8 0.29587 0.023471 0.010669 0.004267 

Identification rates of PCA on the three baseline SR algorithms tested on the AR subset (correspond-
ing to Figure 5-16) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.6416 0.5804 0.4598 0.5332 
12 × 12 0.6049 0.4808 0.3584 0.3339 
8 × 8 0.4755 0.278 0.1818 0.0245 

Identification rates PCA+LDA on the three baseline SR algorithms tested on the AR subset (corre-
sponding to Figure 5-17) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.73077 0.66434 0.51923 0.44755 
12 × 12 0.66259 0.49301 0.33042 0.24825 
8 × 8 0.50699 0.19755 0.1521 0.012238 

Identification rates G-PCA+LDA on the three baseline SR algorithms tested on the AR subset (corre-
sponding to Figure 5-18) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.79196 0.2465 0.35315 0.17308 
12 × 12 0.70629 0.085664 0.12762 0.050699 
8 × 8 0.52448 0.020979 0.050699 0.006993 
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Identification rates LGBPHS on the three baseline SR algorithms tested on the AR subset (corre-
sponding to Figure 5-19) 

Image Size Direct Bicubic Eigentransfor-
mation 

CLLR-SR 

16 × 16 0.47028 0.54371 0.51224 0.30594 
12 × 12 0.27622 0.15909 0.22552 0.1014 
8 × 8 0.13811 0.043706 0.078671 0.006993 

Identification rates of PCA+CLDA vs. PCA+LDA and G-PCA+CLDA vs. G-PCA+LDA tested on the 
CAS-PEAL-R1 subset (corresponding to Figure 5-20) 

Image Size PCA+LDA PCA+CLDA G-PCA+LDA G-PCA+CLDA 
32 × 32 0.80583 0.830014 0.95661 0.960882 
31 × 31 0.80085 0.827881 0.95377 0.955903 
30 × 30 0.80228 0.820768 0.95235 0.952347 
29 × 29 0.79943 0.828592 0.94452 0.944523 
28 × 28 0.79018 0.820768 0.93599 0.935989 
27 × 27 0.79587 0.822191 0.92817 0.928165 
26 × 26 0.79232 0.811522 0.93243 0.932432 
25 × 25 0.78236 0.806543 0.92745 0.928165 
24 × 24 0.78947 0.822191 0.91323 0.913229 
23 × 23 0.78805 0.814367 0.9175 0.917496 
22 × 22 0.7724 0.812945 0.90398 0.903983 
21 × 21 0.78521 0.815789 0.88905 0.889047 
20 × 20 0.76885 0.805832 0.88336 0.883357 
19 × 19 0.77525 0.810811 0.88478 0.88478 
18 × 18 0.75178 0.809388 0.86344 0.863442 
17 × 17 0.74253 0.78165 0.84637 0.846373 
16 × 16 0.75462 0.792319 0.8357 0.835704 
15 × 15 0.74538 0.796586 0.81223 0.812233 
14 × 14 0.72404 0.768137 0.77738 0.777383 
13 × 13 0.72119 0.752489 0.76671 0.766714 
12 × 12 0.68279 0.726174 0.71906 0.719061 
11 × 11 0.67923 0.710526 0.69203 0.714083 
10 × 10 0.62162 0.653627 0.63087 0.654339 
9 × 9 0.59033 0.631579 0.60669 0.640114 
8 × 8 0.55121 0.571124 0.51565 0.573257 
7 × 7 0.4623 0.486486 0.45519 0.507112 
6 × 6 0.39118 0.416074 0.31792 0.357041 
5 × 5 0.30156 0.325747 0.21764 0.234708 
4 × 4 0.19488 0.209104 0.10455 0.108819 
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Identification rates of PCA+CLDA vs. PCA+LDA and G-PCA+CLDA vs. G-PCA+LDA tested on the 
AR subset (corresponding to Figure 5-21) 

Image Size PCA+LDA PCA+CLDA G-PCA+LDA G-PCA+CLDA 
32 × 32 0.7972 0.797203 0.91434 0.924825 
31 × 31 0.77273 0.777972 0.91783 0.921329 
30 × 30 0.76224 0.767483 0.91084 0.914336 
29 × 29 0.76573 0.770979 0.8951 0.90035 
28 × 28 0.77273 0.772727 0.90385 0.910839 
27 × 27 0.79371 0.793706 0.88636 0.893357 
26 × 26 0.76923 0.777972 0.88986 0.893357 
25 × 25 0.77448 0.781469 0.88986 0.88986 
24 × 24 0.76224 0.770979 0.88636 0.888112 
23 × 23 0.76923 0.776224 0.87587 0.884615 
22 × 22 0.76573 0.77972 0.84441 0.847902 
21 × 21 0.74126 0.762238 0.84441 0.844406 
20 × 20 0.75 0.770979 0.84266 0.844406 
19 × 19 0.71503 0.743007 0.8479 0.847902 
18 × 18 0.72727 0.753497 0.81294 0.812937 
17 × 17 0.71678 0.758741 0.8007 0.800699 
16 × 16 0.73077 0.758741 0.79196 0.791958 
15 × 15 0.7028 0.741259 0.75699 0.756993 
14 × 14 0.69755 0.736014 0.75 0.75 
13 × 13 0.67657 0.723776 0.71329 0.713287 
12 × 12 0.66259 0.715035 0.70629 0.706294 
11 × 11 0.60664 0.673077 0.64161 0.641608 
10 × 10 0.61713 0.66958 0.58741 0.596154 
9 × 9 0.54895 0.618881 0.54371 0.587413 
8 × 8 0.50699 0.552448 0.52448 0.555944 
7 × 7 0.48077 0.517483 0.36888 0.417832 
6 × 6 0.38462 0.40035 0.28846 0.31993 
5 × 5 0.26049 0.286713 0.13112 0.16958 
4 × 4 0.19231 0.208042 0.062937 0.06993 
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Appendix II 

Number of principal components used for classification (corresponding to Figure 5-6 Identification 
performance of the four baseline FR algorithms on LR face images tested on the CAS-PEAL-R1 sub-

set) 

Image Size 
 

PCA PCA+LDA G-PCA+LDA 
K D K K 

64 × 64 528 0 528 1013 
63 × 63 505 0 505 1001 
62 × 62 499 0 499 1004 
61 × 61 497 0 497 998 
60 × 60 496 0 496 996 
59 × 59 496 0 496 995 
58 × 58 495 0 495 996 
57 × 57 492 0 492 1003 
56 × 56 493 0 493 1000 
55 × 55 492 0 492 998 
54 × 54 490 0 490 1002 
53 × 53 490 0 490 1001 
52 × 52 489 0 489 999 
51 × 51 488 0 488 997 
50 × 50 486 0 486 999 
49 × 49 484 0 484 1001 
48 × 48 483 0 483 999 
47 × 47 481 0 481 1001 
46 × 46 479 0 479 1004 
45 × 45 477 0 477 1002 
44 × 44 473 1 474 998 
43 × 43 471 0 471 992 
42 × 42 468 0 468 986 
41 × 41 462 1 463 985 
40 × 40 460 0 460 984 
39 × 39 456 0 456 983 
38 × 38 451 0 451 983 
37 × 37 444 0 444 982 
36 × 36 439 0 439 978 
35 × 35 433 0 433 974 
34 × 34 426 0 426 972 
33 × 33 418 0 418 968 



76 

 

32 × 32 402 0 402 956 
31 × 31 399 0 399 957 
30 × 30 389 1 390 939 
29 × 29 381 0 381 925 
28 × 28 369 0 369 928 
27 × 27 358 0 358 928 
26 × 26 344 0 344 919 
25 × 25 331 0 331 900 
24 × 24 315 1 316 888 
23 × 23 302 0 302 890 
22 × 22 286 0 286 874 
21 × 21 270 1 271 825 
20 × 20 253 0 253 797 
19 × 19 236 0 236 789 
18 × 18 219 0 219 767 
17 × 17 202 0 202 733 
16 × 16 183 0 183 740 
15 × 15 166 0 166 658 
14 × 14 148 0 148 633 
13 × 13 132 0 132 585 
12 × 12 115 0 115 493 
11 × 11 99 0 99 437 
10 × 10 82 0 82 340 
9 × 9 69 0 69 263 
8 × 8 56 0 56 193 
7 × 7 43 0 43 95 
6 × 6 32 0 32 55 
5 × 5 23 0 23 28 
4 × 4 15 0 15 9 
K: Number of principal components used for classification 
D: Number of discarded principal components 

Number of principal components used for classification (corresponding to Figure 5-7 Identification 
performance of the four baseline FR algorithms on LR face images tested on the AR subset) 

Image Size 
 

PCA PCA+LDA G-PCA+LDA 
K D K K 

64 × 64 427 6 433 631 
63 × 63 406 6 412 627 
62 × 62 404 6 410 627 
61 × 61 402 6 408 627 
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60 × 60 400 6 406 626 
59 × 59 402 6 408 625 
58 × 58 398 6 404 627 
57 × 57 400 6 406 627 
56 × 56 399 6 405 627 
55 × 55 400 6 406 627 
54 × 54 399 6 405 627 
53 × 53 397 6 403 628 
52 × 52 397 6 403 627 
51 × 51 396 6 402 627 
50 × 50 395 6 401 627 
49 × 49 394 6 400 627 
48 × 48 394 6 400 627 
47 × 47 391 7 398 629 
46 × 46 391 6 397 629 
45 × 45 390 6 396 628 
44 × 44 388 6 394 628 
43 × 43 386 6 392 626 
42 × 42 384 6 390 625 
41 × 41 383 6 389 624 
40 × 40 380 6 386 623 
39 × 39 378 6 384 623 
38 × 38 374 6 380 623 
37 × 37 372 6 378 623 
36 × 36 369 6 375 621 
35 × 35 365 6 371 620 
34 × 34 361 6 367 620 
33 × 33 354 6 360 620 
32 × 32 341 6 347 615 
31 × 31 343 7 350 615 
30 × 30 334 11 345 611 
29 × 29 333 6 339 606 
28 × 28 324 6 330 606 
27 × 27 316 6 322 605 
26 × 26 307 6 313 600 
25 × 25 298 5 303 596 
24 × 24 289 5 294 594 
23 × 23 277 5 282 595 
22 × 22 265 6 271 588 
21 × 21 253 5 258 572 
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20 × 20 237 6 243 559 
19 × 19 224 5 229 554 
18 × 18 208 6 214 544 
17 × 17 190 8 198 530 
16 × 16 175 5 180 535 
15 × 15 164 2 166 502 
14 × 14 147 2 149 479 
13 × 13 128 5 133 452 
12 × 12 114 2 116 409 
11 × 11 98 2 100 370 
10 × 10 82 2 84 303 
9 × 9 68 2 70 235 
8 × 8 51 5 56 180 
7 × 7 39 5 44 95 
6 × 6 31 2 33 55 
5 × 5 20 3 23 27 
4 × 4 13 2 15 9 
K: Number of principal components used for classification 
D: Number of discarded principal components 

Number of principal components used for classification (corresponding to Figure 5-8 Identification 
performance of the four baseline FR algorithms on LR face images tested on the Yale B subset) 

Image Size 
 

PCA PCA+LDA G-PCA+LDA 
K D K K 

64 × 64 107 3 110 177 
63 × 63 101 3 104 177 
62 × 62 101 3 104 177 
61 × 61 101 3 104 176 
60 × 60 102 3 105 176 
59 × 59 102 3 105 176 
58 × 58 101 3 104 176 
57 × 57 101 3 104 177 
56 × 56 101 3 104 176 
55 × 55 102 3 105 176 
54 × 54 101 3 104 176 
53 × 53 101 3 104 176 
52 × 52 101 3 104 176 
51 × 51 101 3 104 176 
50 × 50 101 3 104 176 
49 × 49 101 3 104 176 
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48 × 48 101 3 104 176 
47 × 47 100 3 103 176 
46 × 46 100 3 103 177 
45 × 45 101 3 104 176 
44 × 44 100 3 103 176 
43 × 43 100 3 103 176 
42 × 42 100 3 103 176 
41 × 41 100 3 103 175 
40 × 40 100 3 103 175 
39 × 39 100 3 103 174 
38 × 38 99 3 102 174 
37 × 37 100 2 102 174 
36 × 36 99 3 102 174 
35 × 35 99 3 102 173 
34 × 34 99 3 102 174 
33 × 33 99 2 101 172 
32 × 32 95 2 97 172 
31 × 31 99 2 101 173 
30 × 30 98 2 100 171 
29 × 29 96 3 99 170 
28 × 28 96 3 99 170 
27 × 27 96 3 99 170 
26 × 26 95 2 97 169 
25 × 25 94 3 97 169 
24 × 24 94 2 96 168 
23 × 23 92 3 95 169 
22 × 22 90 3 93 167 
21 × 21 90 3 93 165 
20 × 20 89 3 92 162 
19 × 19 88 2 90 161 
18 × 18 84 3 87 161 
17 × 17 82 3 85 157 
16 × 16 78 2 80 157 
15 × 15 77 2 79 154 
14 × 14 74 2 76 151 
13 × 13 70 3 73 147 
12 × 12 66 2 68 141 
11 × 11 57 4 61 133 
10 × 10 54 2 56 123 
9 × 9 48 2 50 108 
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8 × 8 40 2 42 85 
7 × 7 33 2 35 60 
6 × 6 26 2 28 39 
5 × 5 19 2 21 24 
4 × 4 11 3 14 8 
K: Number of principal components used for classification 
D: Number of discarded principal components 

Number of principal components used for classification (corresponding to Figure 5-9 Identification 
performance of the four baseline FR algorithms on LR face images tested on the Caltech subset) 

Image Size 
 

PCA PCA+LDA G-PCA+LDA 
K D K K 

64 × 64 175 0 175 199 
63 × 63 169 0 169 198 
62 × 62 168 0 168 199 
61 × 61 169 0 169 198 
60 × 60 169 0 169 198 
59 × 59 168 0 168 198 
58 × 58 168 0 168 198 
57 × 57 168 0 168 199 
56 × 56 168 0 168 198 
55 × 55 168 0 168 198 
54 × 54 168 0 168 198 
53 × 53 168 0 168 198 
52 × 52 167 0 167 198 
51 × 51 167 0 167 198 
50 × 50 167 0 167 198 
49 × 49 167 0 167 198 
48 × 48 167 0 167 198 
47 × 47 167 0 167 199 
46 × 46 166 0 166 199 
45 × 45 166 0 166 199 
44 × 44 166 0 166 199 
43 × 43 166 0 166 199 
42 × 42 166 0 166 198 
41 × 41 165 0 165 198 
40 × 40 165 0 165 198 
39 × 39 165 0 165 198 
38 × 38 164 0 164 198 
37 × 37 164 0 164 198 
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36 × 36 163 0 163 197 
35 × 35 163 0 163 197 
34 × 34 162 0 162 198 
33 × 33 162 0 162 198 
32 × 32 155 0 155 195 
31 × 31 161 0 161 197 
30 × 30 160 0 160 197 
29 × 29 158 0 158 195 
28 × 28 157 0 157 196 
27 × 27 156 0 156 195 
26 × 26 155 0 155 194 
25 × 25 153 0 153 194 
24 × 24 152 0 152 194 
23 × 23 150 0 150 193 
22 × 22 146 2 148 193 
21 × 21 145 0 145 191 
20 × 20 142 0 142 188 
19 × 19 138 0 138 188 
18 × 18 134 0 134 188 
17 × 17 130 0 130 186 
16 × 16 121 0 121 184 
15 × 15 118 0 118 182 
14 × 14 112 0 112 180 
13 × 13 103 0 103 175 
12 × 12 93 0 93 167 
11 × 11 83 0 83 162 
10 × 10 71 3 74 150 
9 × 9 61 2 63 130 
8 × 8 49 2 51 106 
7 × 7 42 0 42 74 
6 × 6 32 0 32 46 
5 × 5 22 0 22 27 
4 × 4 15 0 15 9 
K: Number of principal components used for classification 
D: Number of discarded principal components 
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Number of principal components used for classification (corresponding to Figure 5-12 Identification 
performance of PCA on the three baseline SR algorithms tested on the CAS-PEAL-R1 subset) 

Image Size 
 

Bicubic Eigentransfor-
mation 

CLLR-SR 

K D K D K D 
16 × 16 483 0 483 0 483 0 
12 × 12 483 0 483 0 483 0 
8 × 8 483 0 483 0 483 0 
K: Number of principal components used for classification 
D: Number of discarded principal components 

Number of principal components used for classification (corresponding to Figure 5-13 Identification 
performance of PCA+LDA on the three baseline SR algorithms tested on the CAS-PEAL-R1 subset) 

Image Size 
 

Bicubic (K) Eigentransfor-
mation (K) 

CLLR-SR (K) 

16 × 16 483 483 483 
12 × 12 483 483 483 
8 × 8 483 483 483 
K: Number of principal components used for classification 

Number of principal components used for classification (corresponding to Figure 5-14 Identification 
performance of G-PCA+LDA on the three baseline SR algorithms tested on the CAS-PEAL-R1 sub-

set) 

Image Size 
 

Bicubic (K) Eigentransfor-
mation (K) 

CLLR-SR (K) 

16 × 16 999 999 999 
12 × 12 999 999 999 
8 × 8 999 999 999 
K: Number of principal components used for classification 

Number of principal components used for classification (corresponding to Figure 5-16 Identification 
performance of PCA on the three baseline SR algorithms tested on the AR subset) 

Image Size 
 

Bicubic Eigentransfor-
mation 

CLLR-SR 

K D K D K D 
16 × 16 394 6 394 6 394 6 
12 × 12 394 6 394 6 394 6 
8 × 8 394 6 394 6 394 6 
K: Number of principal components used for classification 
D: Number of discarded principal components 
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Number of principal components used for classification (corresponding to Figure 5-17 Identification 
performance of PCA+LDA on the three baseline SR algorithms tested on the AR subset) 

Image Size 
 

Bicubic (K) Eigentransfor-
mation (K) 

CLLR-SR (K) 

16 × 16 400 400 400 
12 × 12 400 400 400 
8 × 8 400 400 400 
K: Number of principal components used for classification 

Number of principal components used for classification (corresponding to Figure 5-18 Identification 
performance of G-PCA+LDA on the three baseline SR algorithms tested on the AR subset) 

Image Size 
 

Bicubic (K) Eigentransfor-
mation (K) 

CLLR-SR (K) 

16 × 16 627 627 627 
12 × 12 627 627 627 
8 × 8 627 627 627 
K: Number of principal components used for classification 

Number of principal components used for classification (corresponding to Figure 5-20 Identification 
performance of PCA+CLDA vs. PCA+LDA and G-PCA+CLDA vs. G-PCA+LDA tested on the CAS-

PEAL-R1 subset) 

Image Size PCA+CLDA G-PCA+CLDA 
KL KH KL KH 

32 × 32 402 483 956 999 
31 × 31 399 483 957 999 
30 × 30 390 483 939 999 
29 × 29 381 483 925 999 
28 × 28 369 483 928 999 
27 × 27 358 483 928 999 
26 × 26 344 483 919 999 
25 × 25 331 483 900 999 
24 × 24 316 483 888 999 
23 × 23 302 483 890 999 
22 × 22 286 483 874 999 
21 × 21 271 483 825 999 
20 × 20 253 483 797 999 
19 × 19 236 483 789 999 
18 × 18 219 483 767 999 
17 × 17 202 483 733 999 
16 × 16 183 483 740 999 
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15 × 15 166 483 658 999 
14 × 14 148 483 633 999 
13 × 13 132 483 585 999 
12 × 12 115 483 493 999 
11 × 11 99 483 437 999 
10 × 10 82 483 340 999 
9 × 9 69 483 263 999 
8 × 8 56 483 193 999 
7 × 7 43 483 95 999 
6 × 6 32 483 55 999 
5 × 5 23 483 28 999 
4 × 4 15 483 9 999 
KL: Number of principal components used for CCA (low-resolution) 
KH: Number of principal components used for CCA (high-resolution) 

Number of principal components used for classification (corresponding to Figure 5-21 Identification 
performance of PCA+CLDA vs. PCA+LDA and G-PCA+CLDA vs. G-PCA+LDA tested on the AR 

subset) 

Image Size PCA+CLDA G-PCA+CLDA 
KL KH KL KH 

32 × 32 347 400 615 627 
31 × 31 350 400 615 627 
30 × 30 345 400 611 627 
29 × 29 339 400 606 627 
28 × 28 330 400 606 627 
27 × 27 322 400 605 627 
26 × 26 313 400 600 627 
25 × 25 303 400 596 627 
24 × 24 294 400 594 627 
23 × 23 282 400 595 627 
22 × 22 271 400 588 627 
21 × 21 258 400 572 627 
20 × 20 243 400 559 627 
19 × 19 229 400 554 627 
18 × 18 214 400 544 627 
17 × 17 198 400 530 627 
16 × 16 180 400 535 627 
15 × 15 166 400 502 627 
14 × 14 149 400 479 627 
13 × 13 133 400 452 627 
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12 × 12 116 400 409 627 
11 × 11 100 400 370 627 
10 × 10 84 400 303 627 
9 × 9 70 400 235 627 
8 × 8 56 400 180 627 
7 × 7 44 400 95 627 
6 × 6 33 400 55 627 
5 × 5 23 400 27 627 
4 × 4 15 400 9 627 
KL: Number of principal components used for CCA (low-resolution) 
KH: Number of principal components used for CCA (high-resolution) 
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